簡易檢索 / 詳目顯示

研究生: 林佑齊
Lin, Yu-Chi
論文名稱: 用於表面增強拉曼散射顯影引導近紅外光光熱殺菌與化學/光熱合併癌症治療之多功能複合奈米粒子
Multifunctional composite nanoparticles for SERS imaging-guided NIR photothermal killing of bacteria and chem/photothermal combinational therapy of cancer
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 128
中文關鍵詞: 氧化鐵聚吡咯近紅外光光熱殺菌表面增強拉曼散射顯影有機金屬骨架化學/光熱合併癌症治療
外文關鍵詞: iron oxide, gold, polypyrrole, NIR photothermal killing of bacteria, surface-enhanced Raman scattering imaging, chem/photothermal therapy, metal-organic framworks
相關次數: 點閱:205下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係關於近紅外光光熱轉換複合奈米粒子之製備並探討其表面增強拉曼散射顯影引導光熱轉換效應於致病菌及癌細胞光熱治療及顯影的應用。本論文內容包括兩個主題(一)製備Fe3O4/Au/PPy(-PVP)複合奈米粒子,並探討其在SERS顯影引導近紅外光光熱殺菌之應用。(二) 製備有機金屬骨架(MIL-100)披覆Fe3O4/Au/PPy(-PVP)複合奈米粒子,並探討其在SERS顯影引導近化學/光熱對癌症合併治療之應用。
    第一部分研究製備Fe3O4/Au/PPy(-PVP)複合奈米粒子。利用顯影技術來引導光熱治療提升光熱治療時的精確度以及治療效率,表面增強拉曼散射(surface-enhanced Raman scattering,SERS) 顯影因其具高穩定度、低背景值干擾與深層組織顯影的優點,其應用於癌症顯影及細菌偵測方面的應用已被廣泛討論,而要發展具低毒性、簡單製備、結構穩定的SERS標定分子以及結合電漿奈米粒子為未來發展的重點。本研究利用簡單的方式將聚吡咯披覆於氧化鐵/金複合奈米粒子來開發一種具SERS顯影以及光熱轉換效果的多功能奈米粒子。Fe3O4/Au/PPy(-PVP)具有優良的近紅外光吸收及光熱轉換效果,此外Fe3O4/Au/PPy(-PVP)在照射785 nm雷射下表面出現聚吡咯之SERS訊號,因此可證明聚吡咯確實可做為SERS的標定分子,藉由聚吡咯的SERS訊號,與Fe3O4/Au/PPy(-PVP)結合的E.coli即可產生SERS顯影,另外,在照射近紅外光下,Fe3O4/Au/PPy(-PVP)利用光熱效果有效的降低細菌的生存率。本研究開發出Fe3O4/Au/PPy(-PVP)確實具有應用於SERS顯影引導近紅外光光熱殺菌之功能。
    第二部分研究製備有機金屬骨架(MIL-100)披覆Fe3O4/Au/PPy(-PVP)複合奈米粒子。發展具有診斷以及治療功能的複合奈米粒子成為癌症治療藥物已受到許多的關注,本研究欲結合有機金屬骨架(MOF)與功能性奈米粒子作為發展多功能奈米平台的藥物,MIL-100為以鐵為中心元素的MOF結構,其具有生物相容性、多孔洞的特性能夠作為藥物的載體,因此本研究將第一部分的Fe3O4/Au/PPy(-PVP)進一步披覆MIL-100來發展一種具有光熱-化學治療以及SERS顯影的多功能奈米平台。Fe3O4/Au/PPy/MIL-100保有SERS特性、優良的近紅外光吸收及光熱轉換效果,在近紅外光照射下,裝載DOX藥物的Fe3O4/Au/PPy/MIL-100產生光熱效果消融癌細胞,同時加速藥物的釋放,因此可大幅提升癌症治療的效果。另外,在Fe3O4/Au/PPy/MIL-100被HeLa吞噬後,在拉曼光譜儀使用785 nm雷射光下能夠顯現聚吡咯的SERS訊號,因此可證明Fe3O4/Au/PPy/MIL-100複合奈米粒子能夠進行癌細胞的SERS顯影。本研究開發的Fe3O4/Au/PPy/MIL-100具有SERS顯影引導化學/光熱癌症合併治療,在開發癌症治療藥物具有十分的潛力。

    This thesis concerns the fabrication of multifunctional nanomaterials for SERS imaging-guided photothermal therapy. The contents include two parts. (1) Fabrication of multifunction Fe3O4/Au/PPy(-PVP) composite nanoparticles for SERS imaging-guided NIR photothermal ablation of bacteria (2) Fabrication of multifunction Fe3O4/Au/PPy/MIL-100 composite nanoparticles for SERS imaging-guided NIR chem/photothermal therapy.
    In the first part concerns the fabrication of fabrication of multifunction Fe3O4/Au/PPy(-PVP) composite nanoparticles. The imaging-guided therapy largely enhaces the therapeutic efficiency of photothermal therapy. Also, SERS imaging is emerging as attractive bioimaging techniques due to its photostability, low background signal interference and high penetration into tissue, thus, the application of SERS imaging for cancer or bacteria diagnosis have been widely investigated. To develop the SERS probe with the properties of low toxicity, simple fabrication and structure stability is the future challenge. In this study, the simple method to integrate SERS probe and functional nanomaterial was developed. The combination of Fe3O4/Au/PPy(-PVP) have been fabricated as a magnetically manipulable multifunctional platform for the SERS imaging-guided NIR photothermal killing of bacteria. The Fe3O4/Au/PPy(-PVP) were demonstrated that Fe3O4/Au/PPy(-PVP) indeed possessed an excellent NIR photothermal conversion ability and Fe3O4/Au/PPy(-PVP) exhibited the remarkable Raman signal of polypyrrole under 785 nm laser because Fe3O4/Au composite nanoparticles were SERS active and polypyrrole could act as a probe. By SERS analysis, the E. coli with and without the binding of Fe3O4/Au/PPy(-PVP) could be differentiated. This demonstrated their potential application in the SERS imaging. Under the 808-nm laser irradiation, their presence could effectively lead to the death of E. coli, revealing their capability in NIR photothermal ablation of bacteria. Accordingly, the Fe3O4/Au/PPy(-PVP) developed in this study are expected to be useful in the SERS imaging-guided NIR photothermal killing of bacteria.
    In the second part, the multifunctional therapeutic nanoplatforms via integrating diagnosis and therapy have attracted broad attention. Also, integrating metal-organic frameworks and other functional material is a promising way to develop the multifunctional therapeutic nanoplatforms. The MOF structure of MIL-100 possesses high porosity and biocompatibility which is of great value as nanocarriers for drug delivery. Hence, the novel Fe3O4/Au/PPy/MIL-100 have been successfully fabricated as a multifunctional platform for the chem/photothermal tharapy and SERS imaging. It was demonstrated that the Fe3O4/Au/PPy/MIL-100 indeed possessed an excellent NIR photothermal conversion ability and they still maintain the SERS property of polypyrrole. Under the 808 nm laser irradiation, Fe3O4/Au/PPy/MIL-100-DOX were able to photothermally ablate cancer, and the DOX release dramatically increase at the same time which further improved the efficiency of therapy. By SERS analysis, it showed the remarkable Raman signal of polypyrrole in cancer cell. This demonstrated their potential application in the SERS imaging. Accordingly, the novel Fe3O4/Au/PPy/MIL-100 developed are expected to be multifunctional therapeutic nanoplatforms with the capability of SERS imaging-guided chem/photothermal therapy combinational therapy of cancer.

    中文摘要 I Abstract III Extended abstract V 致謝 IX 總目錄 XI 表目錄 XV 圖目錄 XVI 第一章、 緒論 1 1.1 近紅外光光熱治療 1 1.1.1 光熱治療 1 1.1.2 光熱轉換材料 2 1.1.3 近紅外光光熱治療在腫瘤治療方面研究 4 1.1.4 近紅外光光熱治療在致病菌感染方面研究 10 1.2 表面增強拉曼散射 12 1.2.1 表面增強拉曼散射現象原理 12 1.2.2 表面增強拉曼散射方面應用 14 1.3 材料簡介 18 1.3.1 氧化鐵奈米粒子 18 1.3.2 金奈米粒子 21 1.3.3 氧化鐵-金奈米粒子 26 1.3.4 導電高分子材料之簡介 28 1.3.5 有機金屬骨架 30 第二章、 基礎理論 33 2.1 表面電漿共振效應 33 2.2 近紅外光光熱轉換 35 第三章、 氧化鐵/金/聚吡咯複合奈米粒子應用於表面增強拉曼散射顯影引導近紅外光光熱殺菌 38 3.1 研究動機 38 3.2 實驗藥品、材料及儀器 41 3.2.1 實驗藥品 41 3.2.2 實驗細菌 42 3.2.3 儀器設備 42 3.2.4 實驗材料 44 3.3 實驗方法 44 3.4 結果與討論 56 3.4.1 材料鑑定 56 3.4.2 近紅外光光熱轉換 65 3.4.3 複合奈米粒子捕捉E.coli 67 3.4.4 近紅外光光熱殺菌 68 3.4.5 表面增強拉曼顯影 70 3.5 結論 74 第四章、 氧化鐵/金/聚吡咯/MIL-100複合奈米粒子應用於表面增強拉曼散射顯影引導化學/光熱之癌症治療 75 4.1 研究動機 75 4.2 實驗藥品、材料及儀器 78 4.2.1. 實驗藥品 78 4.2.2. 實驗細胞株 80 4.2.3. 儀器設備 80 4.2.4. 實驗材料 82 4.3 實驗方法 83 4.4 結果與討論 93 4.4.1 材料鑑定 93 4.4.2 近紅外光光熱轉換 100 4.4.3 藥物裝載/釋放測試 102 4.4.4 細胞毒性與化學/光熱治療測試 105 4.4.5 表面增強拉曼散射顯影 108 4.5 結論 111 參考文獻 114

    [1] D.Jaque, L.Martínez Maestro, B.delRosal, P.Haro-Gonzalez, A.Benayas, J. L.Plaza, E.Martín Rodríguez, and J.García Solé, Nanoparticles for photothermal therapies, Nanoscale, 6, 9494, 2014.
    [2] A.M.Tash, High intensity focused ultrasound ( HIFU ) technique for ablation various disease treatments guided by ultrasound, World J Surg Oncol, 14, 153, 2016.
    [3] R.Shokri, M.Salouti, and R. S.Zanjani, Anti protein A antibody-gold nanorods conjugate: a targeting agent for selective killing of methicillin resistant Staphylococcus aureus using photothermal therapy method, J. Microbio., 53, 116–121, 2015.
    [4] C.Fasciani, M. J.Silvero, M. A.Anghel, G. A.Argüello, M. C.Becerra, and J. C.Scaiano, Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability, J. Am. Chem. Soc., 136, 17394–17397, 2014.
    [5] X.Yang, Z.Li, E.Ju, J.Ren, and X.Qu, Reduced graphene oxide functionalized with a luminescent rare-earth complex for the tracking and photothermal killing of drug-resistant bacteria, Chem. - A Eur. J., 20, 394–398, 2014.
    [6] M.Khan, M. N.Tahir, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications, J. Mater. Chem. A, 3, 18753–18808, 2015.
    [7] T. J.Ondera and A. T.Hamme II, Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens, Analyst, 140, 7902–7911, 2015.
    [8] S.Shen, S.Wang, R.Zheng, X.Zhu, X.Jiang, D.Fu, and W.Yang, Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation, Biomaterials, 39, 67–74, 2015.
    [9] X.Wang, Q.Zhang, L.Zou, H.Hu, M.Zhang, and J.Dai, Facile-synthesized ultrasmall CuS nanocrystals as drug nanocarriers for highly effective chemo–photothermal combination therapy of cancer, RSC Adv., 6, 20949–20960, 2016.
    [10] Z.Huang, Y.Qi, D.Yu, and J.Zhan, Radar-like MoS2 nanoparticles as a highly efficient 808 nm laser-induced photothermal agent for cancer therapy, RSC Adv., 6, 31031–31036, 2016.
    [11] E.Ju, Z.Li, M.Li, K.Dong, J.Ren, and X.Qu, Functional polypyrrole-silica composites as photothermal agents for targeted killing of bacteria., Chem. Commun, 49, 9048-9050,2013.
    [12] C. J.Jeong, S. M.Sharker, I.In, and S. Y.Park, Iron oxide@PEDOT-based recyclable photothermal nanoparticles with poly(vinylpyrrolidone) sulfobetaines for rapid and effective antibacterial activity, ACS Appl. Mater. Interfaces, 7, 9469–9478, 2015.
    [13] P.Xue, K. K. Y.Cheong, Y.Wu, and Y.Kang, An in-vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy, Colloids Surf., B, 125, 277–283, 2015.
    [14] H.Liu, T.Liu, X.Wu, L.Li, L.Tan, D.Chen, and F.Tang, Targeting gold nanoshells on silica nanorattles: A drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light, Adv. Mater., 24, 755–761, 2012.
    [15] Z.Lei, W.Zhu, S.Xu, J.Ding, J.Wan, and P.Wu, Hydrophilic MoSe2 nanosheets as effective photothermal therapy agents and their application in smart devices, ACS Appl. Mater. Interfaces, 8, 20900–20908, 2016.
    [16] C.Wang, S.Ravi, U. S.Garapati, M.Das, M.Howell, J.Mallela, S.Alwarappan, S. S.Mohapatra, and S.Mohapatra, Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents, J. Mater. Chem. B, 1, 4396–4405, 2013.
    [17] Z. H.Miao, H.Wang, H.Yang, Z.Li, L.Zhen, and C. Y.Xu, Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy, ACS Appl. Mater. Interfaces, 8, 15904–15910, 2016.
    [18] Q.Jia, J.Ge, W.Liu, S.Liu, G.Niu, L.Guo, H.Zhang, and P.Wang, Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy., Nanoscale, 8, 13067–77, 2016.
    [19] J.Han, H.Xia, Y.Wu, S.Kong, A.Deivasigamani, R.Xu, K. M.Hui, and Y.Kang, Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy, Nanoscale, 4, 7861–7865, 2016.
    [20] Y. W.Chen, T. Y.Liu, P. J.Chen, P. H.Chang, and S. Y.Chen, A High-Sensitivity and low-power theranostic nanosystem for cell SERS imaging and selectively photothermal therapy using anti-EGFR-conjugated reduced graphene oxide/mesoporous silica/AuNPs nanosheets, Small, 12, 1458–1468, 2016.
    [21] Y.Zhang, C. Y.Ang, M.Li, S. Y.Tan, Q.Qu, and Y.Zhao, Polymeric prodrug grafted hollow mesoporous silica nanoparticles encapsulating near-infrared absorbing dye for potent combined photothermal-chemotherapy, ACS Appl. Mater. Interfaces, 8, 6869–6879, 2016.
    [22] I.Ocsoy, N.Isiklan, S.Cansiz, N.Özdemir, and W.Tan, ICG-conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy, RSC Adv., 6, 30285–30292, 2016.
    [23] H. Z.Lai, W. Y.Chen, C. Y.Wu, and Y. C.Chen, Potent antibacterial nanoparticles for pathogenic bacteria, ACS Appl. Mater. Interfaces, 7, 2046–2054, 2015.
    [24] Z.Xiao, C.Peng, X.Jiang, Y.Peng, X.Huang, G.Guan, W.Zhang, X.Liu, Z.Qin, and J.Hu, Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy, Nanoscale, 8, 12917–12928, 2016.
    [25] X.Dai, Z.Fan, Y.Lu, and P. C.Ray, Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications, ACS Appl. Mater. Interfaces, 5, 11348–11354, 2013.
    [26] J.Wang, X.Wu, C.Wang, N.Shao, P.Dong, R.Xiao, and S.Wang, Magnetically assisted surface-enhanced raman spectroscopy for the detection of staphylococcus aureus based on aptamer recognition, ACS Appl. Mater. Interfaces, 7, 20919–20929, 2015.
    [27] M.Zhu, W.Liu, H.Liu, Y.Liao, J.Wei, X.Zhou, and D.Xing, Construction of Fe3O4/Vancomycin/PEG magnetic nanocarrier for highly efficient pathogen enrichment and gene sensing, ACS Appl. Mater. Interfaces, 7, 12873–12881, 2015.
    [28] D.Chen, C. A.Dougherty, K.Zhu, and H.Hong, Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery, J. Control. Release, 210, 230–245, 2015.
    [29] N.Duhem, F.Danhier, and V.Préat, Vitamin E-based nanomedicines for anti-cancer drug delivery, J.Control. Release, 182, 33–44, 2014.
    [30] Y.Bayazitoglu, S.Kheradmand, and T. K.Tullius, An overview of nanoparticle assisted laser therapy, Int. J. Heat Mass Transf., 67, 469–486, 2013.
    [31] J.Huang, Y.Li, A.Orza, Q.Lu, P.Guo, L.Wang, L.Yang, and H.Mao, Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches, Adv. Funct. Mater., 26, 3818–3836, 2016.
    [32] R.Lv, P.Yang, F.He, S.Gai, C.Li, Y.Dai, G.Yang, and J.Lin, A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light, ACS Nano, 9, 1630–1647, 2015.
    [33] H.Chen, F.Liu, Z.Lei, L.Ma, and Z.Wang, Fe2O3@Au core@shell nanoparticle-graphene nanocomposites as theranostic agents for bioimaging and chemo-photothermal synergistic therapy, RSC Adv., 5, 84980–84987, 2015.
    [34] B. D.Brooks and A. E.Brooks, Therapeutic strategies to combat antibiotic resistance, Adv. Drug Deliv. Rev., 78, 14–27, 2014.
    [35] T.Bartłomiejczyk, A.Lankoff, M.Kruszewski, and I.Szumiel, Silver nanoparticles - Allies or adversaries, Ann. Agric. Environ. Med., 20, 48–54, 2013.
    [36] N.Beyth, Y.Houri-Haddad, A.Domb, W.Khan, R.Hazan, N.Beyth, Y.Houri-Haddad, A.Domb, W.Khan, and R.Hazan, Alternative antimicrobial approach: nano-antimicrobial materials, Evidence-Based Complement. Altern. Med., 2015, 1–16, 2015.
    [37] W. C.Huang, P. J.Tsai, and Y. C.Chen, Multifunctional Fe3O4 @Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria, Small, 5, 51–56, 2009.
    [38] C. W.Chen, C. Y.Hsu, S. M.Lai, W. J.Syu, T. Y.Wang, and P. S.Lai, Metal nanobullets for multidrug resistant bacteria and biofilms, Adv. Drug Deliv. Rev.., 78, 88–104, 2014.
    [39] L.Yang, P.Li, and J.Liu, Progress in multifunctional surface-enhanced Raman scattering substrate for detection, RSC Adv., 4, 49635–49646, 2014.
    [40] S.-Y.Ding, J.Yi, J.-F.Li, B.Ren, D.-Y.Wu, R.Panneerselvam, and Z.-Q.Tian, Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials, Nat. Rev. Mater., 1, 16021, 2016.
    [41] Z.Liu, B.Ye, M.Jin, H.Chen, H.Zhong, X.Wang, and Z.Guo, Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy, Nanoscale, 7, 6754–6761, 2015.
    [42] Y.Gao, Y.Li, Y.Wang, Y.Chen, J.Gu, W.Zhao, J.Ding, and J .Shi, Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection, Small, 11, 77–83, 2015.
    [43] F.Hu, Y.Zhang, G.Chen, C.Li, and Q.Wang, Double-walled Au nanocage/SiO2 nanorattles: Integrating SERS imaging, drug delivery and photothermal therapy, Small, 11, 985–993, 2015.
    [44] D.Lin, T.Qin, Y.Wang, X.Sun, and L.Chen, Graphene oxide wrapped SERS tags: Multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect, ACS Appl. Mater. Interfaces, 6, 1320–1329, 2014.
    [45] W.Wu, C.Jiang, and V. A. L.Roy, Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical application, Nanoscale, 8, 19421–19474, 2016.
    [46] W.Zhang, X.Zheng, S.Shen, and X.Wang, Doxorubicin-loaded magnetic nanoparticle clusters for chemo-photothermal treatment of the prostate cancer cell line PC3, Biochem. Biophys. Res. Commun., 466, 278–282, 2015.
    [47] C.Wang, H.Xu, C.Liang, Y.Liu, Z.Li, G.Yang, Y.Li, Z.Liu, and F.Nano, Iron oxide@polypyrrole nanoparticles as a multifunctional drug carrier for remotly controlled cancer therapy with synergistic anti-tumor effect-supporting information, ACS Nano, 7, 1–11, 2013.
    [48] Q.Su, Y.Han, and X.Liu, Sub-10 nm Fe3O4@Cu2–xS core–shell nanoparticles for dual-modal imaging and photothermal therapy, J. Am. Chem. Soc., 135, 8571−8577, 2013.
    [49] C.Santhosh, P.Kollu, S.Doshi, M.Sharma, D.Bahadur, M. T.Vanchinathan, P.Saravanan, B.-S.Kim, and A. N.Grace, Adsorption, photodegradation and antibacterial study of graphene–Fe3O4 nanocomposite for multipurpose water purification application, RSC Adv., 4, 28300–28308, 2014.
    [50] A. I.Mazrad Zihnil, I.In, and S. Y.Park, Reusable Fe3O4 and WO3 immobilized onto montmorillonite as a photo-reactive antimicrobial agent, RSC Adv., 6, 54486–54494, 2016.
    [51] D.Liu, L.Ma, L.Liu, L.Wang, Y.Liu, Q.Jia, Q.Guo, G.Zhang, and J.Zhou, Polydopamine-encapsulated Fe3O4 with an adsorbed HSP70 inhibitor for improved photothermal inactivation of bacteria, ACS Appl. Mater. Interfaces, 8, 24455–24462, 2016.
    [52] H.Shen, J.Wang, H.Liu, Z.Li, F.Jiang, F.-B.Wang, and Q.Yuan, Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition, ACS Appl. Mater. Interfaces, 8, 19371–19378, 2016.
    [53] D.Pissuwan, C. H.Cortie, S. M.Valenzuela, and M. B.Cortie, Functionalised gold nanoparticles for controlling pathogenic bacteria, Trends Biotechnol., 28, 207–213, 2010.
    [54] T.-M.Liu, J.Conde, T.Lipiński, A.Bednarkiewicz, and C.-C.Huang, Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications, NPG Asia Mater., 8, 295, 2016.
    [55] C.Du, A.Wang, J.Fei, J.Zhao, and J.Li, Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy, J. Mater. Chem. B, 3, 4539–4545, 2015.
    [56] K.Turcheniuk, C.-H.Hage, J.Spadavecchia, A. Y.Serrano, I.Larroulet, A.Pesquera, A.Zurutuza, M. G.Pisfil, L.Héliot, J.Boukaert, R.Boukherroub, and S.Szunerits, Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide, J. Mater. Chem. B, 3, 375–386, 2015.
    [57] Y. V.Kaneti, C.Chen, M.Liu, X.Wang, J. L.Yang, R. A.Taylor, X.Jiang, and A.Yu, Carbon-coated gold Nanorods: A facile route to biocompatible materials for photothermal applications, ACS Appl. Mater. Interfaces, 7, 25658–25668, 2015.
    [58] S.Li, L.Zhang, T.Wang, L.Li, C.Wang, and Z.Su, The facile synthesis of hollow Au nanoflowers for synergistic chemo-photothermal cancer therapy, Chem. Commun., 51, 14338–14341, 2015.
    [59] M.Lin, C.Guo, J.Li, D.Zhou, K.Liu, X.Zhang, T.Xu, H.Zhang, L.Wang, and B.Yang, Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%, ACS Appl. Mater. Interfaces, 6, 5860–5868, 2014.
    [60] J.Cai, V.Raghavan, Y. J.Bai, M. H.Zhou, X. L.Liu, C. Y.Liao, P.Ma, L.Shi, P.Dockery, I.Keogh, H. M.Fan, and M.Olivo, Controllable synthesis of tetrapod gold nanocrystals with precisely tunable near-infrared plasmon resonance towards highly efficient surface enhanced Raman spectroscopy bioimaging, J. Mater. Chem. B, 3, 7377–7385, 2015.
    [61] A. J.McGrath, Y. H.Chien, S.Cheong, D. A. J.Herman, J.Watt, A. M.Henning, L.Gloag, C. S.Yeh, and R. D.Tilley, Gold over branched palladium nanostructures for photothermal cancer therapy, ACS Nano, 9, 12283–12291, 2015.
    [62] J.Han, J.Zhang, M.Yang, D.Cui, and J. M.dela Fuente, Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy, Nanoscale, 8, 492–9, 2015.
    [63] Z.Xu, Y.Hou, and S.Sun, Magnetic core/shell Fe3O4 /Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties, J. Am. Chem. Soc., 129, 8698–8699, 2007.
    [64] Wang, J.Luo, Q.Fan, M.Suzuki, I. S.Suzuki, M. H.Engelhard, Y.Lin, N.Kim, J. Q.Wang, andC.-J.Zhong, Monodispersed core−shell Fe3O4@Au nanoparticles, J. Phys. Chem. B, 109, 21593–21601, 2005.
    [65] H.Chen, F.Qi, H.Zhou, S.Jia, Y.Gao, K.Koh, and Y.Yin, Fe3O4@Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection, Sensors Actuators B Chem., 212, 505–511, 2015.
    [66] M.Ghorbani, H.Hamishehkar, N.Arsalani, and A. A.Entezami, Preparation of thermo and pH-responsive polymer@Au/Fe3O4 core/shell nanoparticles as a carrier for delivery of anticancer agent,” J. Nanoparticle Res, 17, 305–321, 2015.
    [67] J.Li, L.Zheng, H.Cai, W.Sun, M.Shen, G.Zhang, and X.Shi, Jingchao Li, Linfeng Zheng, Hongdong Cai, Wenjie Sun, Mingwu Shen, Guixiang Zhang, and Xiangyang Shi, Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications, ACS Appl. Mater. Interfaces, 5 10357–10366 2013.
    [68] J.Bao, W.Chen, T.Liu, Y.Zhu, P.Jin, L.Wang, J.Liu, Y.Wei, and Y.Li, Bifunctional Au-Fe3O4 nanoparticles for protein separation, ACS Nano, 1, 293–298, 2007.
    [69] X.Ji, R.Shao, and A.Elliott, Bifunctional gold nanoshells with a superparamagnetic iron oxide− silica core suitable for both MR imaging and photothermal therapy, J. Phys. Chem. C, 111, 6245–6251, 2007.
    [70] J. L.Lyon, D. A.Fleming, M. B.Stone, P.Schiffer, and M. E.Williams, Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding, Nano Lett., 4, 719–723, 2004.
    [71] M.Wang, Emerging multifunctional NIR photothermal therapy systems based on polypyrrole nanoparticles, Polymer, 8, 373, 2016.
    [72] W. L.Chiang, T. T.Lin, R.Sureshbabu, W. T.Chia, H. C.Hsiao, H. Y.Liu, C. M.Yang, and H. W.Sung, A rapid drug release system with a NIR light-activated molecular switch for dual-modality photothermal/antibiotic treatments of subcutaneous abscesses, J. Control. Release, 199, 53–62, 2015.
    [73] J.Wang, F.Lin, J.Chen, M.Wang, and X.Ge, The preparation , drug loading and in vitro NIR photothermal-controlled release behavior of raspberry-like hollow polypyrrole microspheres , J. Mater. Chem. B, 3, 9186–9193, 2015.
    [74] D.Park, O.Ahn, C.Jeong, and Y.Choi, Polypyrrole-based nanotheranostics for activatable fluorescence imaging and chemo/photothermal dual therapy of triple-negative breast cancer, Nanotechnology, 27, 185102, 2016.
    [75] B.Li, H.Wen, Y.Cui, W.Zhou, G.Qian, and B.Chen, Emerging multifunctional metal-organic framework materials, Adv. Mater., 28, 8819–8860, 2016.
    [76] Z.Wang, X.Tang, X.Wang, D.Yang, C.Yang, Y.Lou, J.Chen, and N.He, Near-infrared light-induced dissociation of zeolitic imidazole framework-8 (ZIF-8) with encapsulated CuS nanoparticles and their application as a therapeutic nanoplatform, Chem. Commun., 52, 12210–12213, 2016.
    [77] A. R.Chowdhuri, D.Bhattacharya, and S. K.Sahu, Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent, Dalt. Trans., 45, 2963–2973, 2016.
    [78] A. R.Chowdhuri, T.Singh, S. K.Ghosh, and S. K.Sahu, Carbon dots embedded magnetic nanoparticles@chitosan@metal organic framework as a nanoprobe for pH Sensitive targeted anticancer drug delivery, ACS Appl. Mater. Interfaces, 8, 16573–16583, 2016.
    [79] D.Wang, J.Zhou, R.Chen, R.Shi, G.Xia, S.Zhou, Z.Liu, N.Zhang, H.Wang, Z.Guo, and Q.Chen, Biomaterials magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles, Biomaterials, 107, 88–101, 2016.
    [80] D.Yang, G.Yang, S.Gai, F.He, G.An, Y.Dai, R.Lv, and P.Yang, Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light, Nanoscale, 7, 19568–19578, 2015.
    [81] X.Chen and C.Lee, Graphitic carbon nitride nanosheet@metal–organic framework core–shell nanoparticles for photo-chemo combination therapy, Nanoscale, 7, 17299–17305, 2015.
    [82] Z.Tian, X.Yao, and Y.Zhu, Simple synthesis of multifunctional zeolitic imidazolate frameworks-8/graphene oxide nanocrystals with controlled drug release and photothermal effect, Microporous Mesoporous Mater., 237, 160–167, 2017.
    [83] V. A.Online, Facile synthesis of polypyrrole@metal–organic framework core–shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells, J. Mater. Chem. B, 5, 1772-1778, 2017.
    [84] Y.Zhu, S.Chen, H.Zhao, Y.Yang, X.Chen, J.Sun, H.Fan, and X.Zhang, PPy@ MIL-100 nanoparticles as a pH- and near-IR-irradiation- responsive drug carrier for simultaneous photothermal therapy and chemotherapy of cancer cells, ACS Appl. Mater. Interfaces, 8, 34209−34217, 2016.
    [85] D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodrígueza and J. García Soléa, Nanoparticles for photothermal therapies, Nanoscale, 6, 9494-9530, 2014.
    [86] Y.Zhu, S.Chen, H.Zhao, Y.Yang, X.Chen, J.Sun, H.Fan, and X.Zhang, PPy @ MIL-100 nanoparticles as a pH- and near-IR-irradiation- responsive drug carrier for simultaneous photothermal therapy and chemotherapy of cancer cells, ACS Appl. Mater. Interfaces, 8, 34209−34217,2016.
    [87] A.Introduction, Nanoparticles for photothermal therapies, Nanoscale, 6, 9494-9530, 2014.
    [88] K. M.Au, Z.Lu, S. J.Matcher, and S. P.Armes, Polypyrrole nanoparticles : A potential optical coherence tomography contrast agent for cancer imaging, Adv. Mater., 23, 5792–5795, 2011.
    [89] C. M.Macneill, R. C.Coffin, D. L.Carroll, and N. H.Levi-polyachenko, Low band gap donor-acceptor conjugated polymer nanoparticles and their NIR-mediated thermal ablation of cancer cells, Macromol. Biosci., 13, 28–34 2013.
    [90] B.Di, Y.Meng, Y. D.Wang, X. J.Liu, and Z.An, Formation and evolution dynamics of bipolarons in conjugated polymers, J. Phys. Chem. B, 115, 964–971, 2011.
    [91] M.Chu, Y.Shao, J.Peng, X.Dai, H.Li, and Q.Wu, Biomaterials near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles, Biomaterials, 34, 16, 4078–4088, 2013.
    [92] T.Xin, M.Ma, H.Zhang, J.Gu, S.Wang, M.Liu, and Q.Zhang, A facile approach for the synthesis of magnetic separable Fe3O4@TiO2 core – shell nanocomposites as highly recyclable photocatalysts, Appl. Surf. Sci., 288, 1, 51–59, 2014.
    [93] B.Saif, C.Wang, D.Chuan, and S.Shuang, Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug, J Biomater Nanobiotechnol., 6, 267-275.
    [94] H.Woo, W.Jung, D.Ihm, and J.Kim, Synthesis and dispersion of polypyrrole nanoparticles in polyvinylpyrrolidone emulsion, Synthetic Metals,160, 588-591, 2010.
    [95] X.Guo, Z.Wu, W.Li, Z.Wang, Q.Li, F.Kong, H.Zhang, X.Zhu, Y. P.Du, Y.Jin, Y.Du, and J.You, Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy, ACS Appl. Mater. Interfaces, 8, 3092−3106, 2016.
    [96] Z.Lou, A Facile approach to monodisperse Au nanoparticles on Fe3O4 nanostructures with surface plasmon resonance amplification, J. Nanosci. Nanotechnol. 14, 1-8, 2014
    [97] A. U.Core, M. O. F.Shell, K.Deng, Z.Hou, X.Li, C.Li, Y.Zhang, X.Deng, and Z.Cheng, Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging, Sci. Rep., 5, 7851, 2015.
    [98] D.Wang, J.Zhou, R.Chen, R.Shi, G.Zhao, G.Xia, R.Li, Z.Liu, J.Tian, H.Wang, Z.Guo, H.Wang, and Q.Chen, Biomaterials controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery , magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy, Biomaterials, 100, 27–40, 2016.
    [99] 賴柏宏, 多功能六硼化鑭複合奈米粒子之製備與近紅外光光熱治療應用, 國立成功大學化學工程系博士論文, 2014.
    [100] 陳思妤, 聚吡咯/金/氧化銫鎢複合奈米粒子之製備與生醫應用, 國立成功大學化學工程系碩士論文, 2014.

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE