| 研究生: |
陳文怡 Chen, Wen-Yi |
|---|---|
| 論文名稱: |
A 群鏈球菌免疫球蛋白 G 分解酶及篩選寡胜肽膜透酶相關蛋白之研究 Characterization of immunoglobulin G degrading enzyme and screening the cellular interaction proteins with oligopeptide permease A in Group A Streptococcus |
| 指導教授: |
吳俊忠
Wu, Jiunn-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 酵素 、免疫球蛋白G分解酶 |
| 外文關鍵詞: | IdeS, immunoglobulin G degrading enzyme of streptococc |
| 相關次數: | 點閱:99 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A 群鏈球菌為一重要的人類病原菌。此菌有許多致病因子,其中免疫球蛋白 G 降解酶 (Immunoglobulin G degrading enzyme of S. pyogenes , IdeS )又稱為 Mac,能分泌至細胞外且對免疫球蛋白 G 具分解能力的的半胱胺酸蛋白酶。此蛋白酶不僅幫助細菌抑制抗體調控的吞噬作用,並且抑制在吞噬過程中所產生的活性氧分子 (Reactive oxygen species) 。為了進一步證實 IdeS 在致病機轉之角色,我們利用插入法構築 ideS 突變株。由南方墨點法及西方墨點法證實 ideS 基因已被中斷,並無法表現 IdeS,而 ideS 互補株有部分回復現象。在體外試驗,此突變株幾乎無法存活於人類全血,並且在氧化性壓力環境的生存能力與野生株相比約下降 4 倍,而 ideS 互補株有部分回復之現象。這些結果顯示 IdeS 在 A 群鏈球菌致病機轉中確實扮演著重要的角色。然而在野生株與突變株感染小鼠後,小鼠存活率沒有顯著上的差異,顯示 IdeS 在 A 群鏈球菌感染小鼠上不具其重要性。此外,本研究群先前已證實寡胜肽膜透酶在 A 群鏈球菌在感染過程扮演重要角色,為了釐清 OppA 之功能,本研究利用酵母菌雜交試驗篩選與 OppA 有相關之蛋白質。在 176 個有交互作用的轉型株中找到 100 個不同酵素片段的轉型株,將 100 個基因定序後至 NCBI 資料庫中進行比對。我們發現細胞上的蛋白質 integrin 與細胞間質蛋白質 laminin 與 OppA 可能有交互作用。未來應進一步釐清這些蛋白質與 OppA 之關連性。
Group A streptococcus (GAS) is an important human pathogen. There are many virulence factors located either on the bacterial surface or secreted into the surrounding environment. The immunoglobulin G-degrading enzyme (IdeS), also known as streptococcal Mac, is a secreted IgG-specific cysteine endopeptidase. IdeS not only inhibits phagocytosis, but also reduces reactive oxygen species (ROS) production during phagocytosis, suggesting that IdeS is important in the pathogenesis of GAS. To further investigate the potential roles of IdeS in the pathogenesis of GAS, an isogenic ideS mutant was constructed by integrative plasmid to disrupt the ideS and confirmed by Southern blot and Western blot. The ideS complementation strain had partially restored IdeS expression. In vitro, the ideS mutant almost can’t survive in the human whole blood. The mutant decreased 75% of ability to survive in oxidative environment, and ideS complementation strain had partially restored its ability. These results show that IdeS plays an important role in streptococcal infections. However, there was no difference of survival rate in BALB/c mice between wild-type strain and ideS mutant, suggesting that IdeS is not an important virulence factor for GAS infection in BALB/c mice. Previously, in our lab, we have demonstrated that OppA plays an important role in the pathogenesis of GAS infection. To further study the function of OppA, yeast two-hybrid assay was used to screen for interacted proteins. A total of 100 restriction patterns were found in 176 clones. One hundred clones were sequenced and compared to NCBI database. We found several interesting clones that OppA may associate with integrin (cell surface protein) and laminin (extracellular matrix glycoprotein). In the future, the interaction between OppA and these proteins needs further study.
Agniswamy, J., B. Lei, J. M. Musser, and P. D. Sun. 2004. Insight of host immune evasion mediated by two variants of group A Streptococcus Mac protein. J. Biol. Chem. 279: 52789-52796.
Andrews, S. C. 1998. Iron storage in bacteria. Adv. Microb. Physiol. 40: 281-351.
Akesson, P., J. Cooney, F. Kishimoto, and L. Bjorck. 1990. Protein H--a novel IgG binding bacterial protein. Mol. Immunol. 27: 523-531.
Akesson, P., L. Moritz, M. Truedsson, B. Christensson, and U. von Pawel-Rammingen. 2006. IdeS, a highly specific immunoglobulin G (IgG)-cleaving enzyme from Streptococcus pyogenes, is inhibited by specific IgG antibodies generated during infection. Infect. Immun. 74: 497-503.
Ashbaugh, C. D., S. Alberti, and M. R. Wessels. 1998. Molecular analysis of the capsule gene region of group A Streptococcus: the hasAB genes are sufficient for capsule expression. J. Bacteriol. 180: 4955-4959.
Brakebusch, C., D. Bouvard, F. Stanchi, T. Sakai, and R. Fassler. 2002. Integrins in invasive growth. J. Clin. Invest. 109: 999-1006.
Brenot, A., K. Y. King, and M. G. Caparon. 2005. The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol. Microbiol. 55: 221-234.
Burova, L., A. Thern, P. Pigarevsky, M. Gladilina, V. Seliverstova, E. Gavrilova, V. Nagornev, C. Schalen, and A. Totolian. 2003. Role of group A streptococcal IgG-binding proteins in triggering experimental glomerulonephritis in the rabbit. APMIS. 111: 955-962.
Carlsson, F., C. Sandin, and G. Lindahl. 2005. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol. Microbiol. 56: 28-39.
Carapetis, J. R., A. C. Steer, E. K. Mulholland, and M. Weber. 2005. The global burden of group A streptococcal diseases. Lancet. Infect. Dis 5: 685-694.
Chiang-Ni, C., C. H. Wang, P. J. Tsai, W. J. Chuang, Y. S. Lin, M. T. Lin, C. C. Liu, and J. J. Wu. 2006. Streptococcal pyrogenic exotoxin B causes mitochondria damage to polymorphonuclear cells preventing phagocytosis of Group A streptococcus. Med. Microbiol. Immunol. (Berl) 195: 55-63.
Colman, G., A. Tanna, A. Efstratiou, and E. T. Gaworzewska. 1993. The serotypes of Streptococcus pyogenes present in Britain during 1980-1990 and their association with disease. J. Med. Microbiol. 39: 165-178.
Cord B and F Reinhard. 2003. The integrin-actin connection, an eternal love affair. EMBO. J. 22: 2324-2333.
Cundell, D. R., B. J. Pearce, J. Sandros, A. M. Naughton, and H. R. Masure. 1995. Peptide permeases from Streptococcus pneumoniae affect adherence to eucaryotic cells. Infect. Immun. 63: 2493-2498.
Cywes Bentley, C., A. Hakansson, J. Christianson, and M. R. Wessels. 2005. Extracellular group A Streptococcus induces keratinocyte apoptosis by dysregulating calcium signalling. Cell. Microbiol. 7: 945-955.
Federle, M. J., K. S. McIver, and J. R. Scott. 1999. A response regulator that represses transcription of several virulence operons in the group A streptococcus. J. Bacteriol. 181: 3649-3657.
Fernie-King, B. A., D. J. Seilly, and P. J. Lachmann. 2006. Inhibition of antimicrobial peptides by group A streptococci: SIC and DRS. Biochem. Soc. Trans. 34: 273-285.
Fernie-King, B. A., D. J. Seilly, C. Willers, R. Wurzner, A. Davies, and P. J. Lachmann. 2001. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology 103: 390-398.
Hakansson, A., J. Sanchez-Dehesa, F. Cervera, F. Meseguer, L. Sanchis, and J. Llinares. 2005. Comment on "Theory of tailoring sonic devices: diffraction dominates over refraction". Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. 71: 018601-018602.
Hoe, N. P., R. M. Ireland, F. R. DeLeo, B. B. Gowen, D. W. Dorward, J. M. Voyich, M. Liu, E. H. Burns, Jr., D. M. Culnan, A. Bretscher, and J. M. Musser. 2002. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells. Proc. Natl. Acad. Sci. USA 99: 7646-7651.
Hong, K. 1997. Human IgG binding ability of streptococcal M3 protein: its related complement activation-dependent M3 protein polymerization. FEMS. Immunol. Med. Microbiol. 18: 163-174.
Jadoun, J., V. Ozeri, E. Burstein, E. Skutelsky, E. Hanski, and S. Sela. 1998. Protein F1 is required for efficient entry of Streptococcus pyogenes into epithelial cells. J. Infect. Dis. 178: 147-158.
Kapur, V., S. Topouzis, M. W. Majesky, L. L. Li, M. R. Hamrick, R. J. Hamill, J. M. Patti, and J. M. Musser. 1993. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15: 327-346.
Kuo, C. F., Wu, J. J., Lin, K. Y., Tsai, P. J., Lee, S. C., Jin, Y. T., Lei, J. Y., and Y. S. Lin. 1998. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66: 3931-3935.
Kuo CF, Wu JJ, Tsai PJ, Kao FJ, Lei HY, Lin MT., and Y. S. Lin. 1999 Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67: 126–130
Kunji, E. R., A. Hagting, C. J. De Vries, V. Juillard, A. J. Haandrikman, B. Poolman, and W. N. Konings. 1995. Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 270: 1569-1574.
Lahteenmaki, K., P. Kuusela, and T. K. Korhonen. 2001. Bacterial plasminogen activators and receptors. FEMS. Microbiol. Rev. 25: 531-552.
Lei, B., F. R. DeLeo, N. P. Hoe, M. R. Graham, S. M. Mackie, R. L. Cole, M. Liu, H. R. Hill, D. E. Low, M. J. Federle, J. R. Scott, and J. M. Musser. 2001. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat. Med. 7: 1298-1305.
Lei, B., F. R. DeLeo, S. D. Reid, J. M. Voyich, L. Magoun, M. Liu, K. R. Braughton, S. Ricklefs, N. P. Hoe, R. L. Cole, J. M. Leong, and J. M. Musser. 2002. Opsonophagocytosis-inhibiting mac protein of group A streptococcus: identification and characteristics of two genetic complexes. Infect. Immun. 70: 6880-6890.
Lei, B., M. Liu, E. G. Meyers, H. M. Manning, M. J. Nagiec, and J. M. Musser. 2003. Histidine and aspartic acid residues important for immunoglobulin G endopeptidase activity of the group A Streptococcus opsonophagocytosis-inhibiting Mac protein. Infect. Immun. 71: 2881-2884.
Molinari, G., S. R. Talay, P. Valentin-Weigand, M. Rohde, and G. S. Chhatwal. 1997. The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect. Immun. 65: 1357-1363.
Nyberg, P., M. Rasmussen, U. Von Pawel-Rammingen, and L. Bjorck. 2004. SpeB modulates fibronectin-dependent internalization of Streptococcus pyogenes by efficient proteolysis of cell-wall-anchored protein F1. Microbiology 150: 1559-1569.
Ohara-Nemoto, Y., M. Sasaki, M. Kaneko, T. Nemoto, and M. Ota. 1994. Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can. J. Microbiol. 40: 930-936.
Ozeri, V., I. Rosenshine, A. Ben-Ze'Ev, G. M. Bokoch, T. S. Jou, and E. Hanski. 2001. De novo formation of focal complex-like structures in host cells by invading streptococci. Mol. Microbiol. 41: 561-573.
Ozeri, V., I. Rosenshine, D. F. Mosher, R. Fassler, and E. Hanski. 1998. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol. Microbiol. 30: 625-637.
Pandiripally, V., E. Gregory, and D. Cue. 2002. Acquisition of regulators of complement activation by Streptococcus pyogenes serotype M1. Infect. Immun. 70: 6206-6214.
Pinkney, M., V. Kapur, J. Smith, U. Weller, M. Palmer, M. Glanville, M. Messner, J. M. Musser, S. Bhakdi, and M. A. Kehoe. 1995. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli expressing recombinant toxin: cleavage by streptococcal cysteine protease. Infect. Immun. 63: 2776-2779.
Porter RM and EB Lane. 2003. Phenotypes, genotypes and their contribution to understanding keratin function. Trends. Genet. 19: 278-285
Podbielski, A., B. Pohl, M. Woischnik, C. Korner, K. H. Schmidt, E. Rozdzinski, and B. A. Leonard. 1996. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (opp) and its effect on cysteine protease production. Mol. Microbiol. 21: 1087-1099.
Podbielski, A., M. Woischnik, B. Pohl, and K. H. Schmidt. 1996. What is the size of the group A streptococcal vir regulon? The Mga regulator affects expression of secreted and surface virulence factors. Med. Microbiol. Immunol. (Berl) 185: 171-181.
Raeder, R., M. Woischnik, A. Podbielski, and M. D. Boyle. 1998. A secreted streptococcal cysteine protease can cleave a surface-expressed M1 protein and alter the immunoglobulin binding properties. Res. Microbiol. 149: 539-548.
Ragno, S., I. Estrada-Garcia, R. Butler, and M. J. Colston. 1998. Regulation of macrophage gene expression by Mycobacterium tuberculosis: down-regulation of mitochondrial cytochrome c oxidase. Infect. Immun. 66: 3952-8.
Rezcallah, M. S., K. Hodges, D. B. Gill, J. P. Atkinson, B. Wang, and P. P. Cleary. 2005. Engagement of CD46 and α5β1 integrin by group A streptococci is required for efficient invasion of epithelial cells. Cell. Microbiol. 7: 645-653.
Schrager, H. M., S. Alberti, C. Cywes, G. J. Dougherty, and M. R. Wessels. 1998. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J. Clin. Invest. 101: 1708-1716.
Solomon, J. M., R. Magnuson, A. Srivastava, and A. D. Grossman. 1995. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev. 9: 547-558.
Spellerberg, B., E. Rozdzinski, S. Martin, J. Weber-Heynemann, N. Schnitzler, R. Lutticken, and A. Podbielski. 1999. Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect. Immun. 67: 871-878.
Stockbauer, K. E., L. Magoun, M. Liu, E. H. Burns, Jr., S. Gubba, S. Renish, X. Pan, S. C. Bodary, E. Baker, J. Coburn, J. M. Leong, and J. M. Musser. 1999. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins αvβ3 and αIIbβ3. Proc. Natl. Acad. Sci. USA 96: 242-247.
Thern, A., M. Wastfelt, and G. Lindahl. 1998. Expression of two different antiphagocytic M proteins by Streptococcus pyogenes of the OF+ lineage. J Immunol. 160: 860-9.
Tsai, P. J., C. F. Kuo, K. Y. Lin, Y. S. Lin, H. Y. Lei, F. F. Chen, J. R. Wang, and J. J. Wu. 1998. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect. Immun. 66: 1460-1466.
Tsai, P. J., Y. S. Lin, C. F. Kuo, H. Y. Lei, and J. J. Wu. 1999. Group A Streptococcus induces apoptosis in human epithelial cells. Infect. Immun. 67: 4334-4339.
Tsai, W. H., C. W. Chang, W. J. Chuang, Y. S. Lin, J. J. Wu, C. C. Liu, W. T. Chang, and M. T. Lin. 2004. Streptococcal pyrogenic exotoxin B-induced apoptosis in A549 cells is mediated by a receptor- and mitochondrion-dependent pathway. Infect. Immun. 72: 7055-7062.
Tsao, N., W. H. Tsai, Y. S. Lin, W. J. Chuang, C. H. Wang, and C. F. Kuo. 2006. Streptococcal pyrogenic exotoxin B cleaves properdin and inhibits complement-mediated opsonophagocytosis. Biochem. Biophys. Res. Commun. 339: 779-784.
von Pawel-Rammingen, U., B. P. Johansson, and L. Bjorck. 2002. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO. J. 21: 1607-1615.
von Pawel-Rammingen, U., and L. Bjorck. 2003. IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr. Opin. Microbiol. 6: 50-55.
Wahid, R. M., M. Yoshinaga, J. Nishi, N. Maeno, J. Sarantuya, T. Ohkawa, A. M. Jalil, K. Kobayashi, and K. Miyata. 2005. Immune response to a laminin-binding protein (Lmb) in group A streptococcal infection. Pediatr. Int. 47: 196-202.
Wang, C. H., C. Y. Lin, Y. H. Luo, P. J. Tsai, Y. S. Lin, M. T. Lin, W. J. Chuang, C. C. Liu, and J. J. Wu. 2005. Effects of oligopeptide permease in group A streptococcal infection. Infect. Immun. 73: 2881-2890.
Whitnack, E., and E. H. Beachey. 1985. Biochemical and biological properties of the binding of human fibrinogen to M protein in group A streptococci. J. Bacteriol. 164: 350-358.
長庚醫訊,2000,第11卷,第5期 侵襲性A群鏈球菌感染之致病機轉與治療趨勢。
林桂媛 1997. Study of the speB gene in Streptococcus pyogenes. 國立成功大學微生物暨免疫學研究所碩士論文。
鄒志成 2004. Effect of the dacA gene in Streptococcus pyogenes infection. 國立成功大學微生物及免疫學研究所碩士論文 。
王志宏 2005. Roles of Oligopeptide permease in group A streptococcal infection. 國立成功大學基礎醫學研究所博士論文 。
曾鈺晶 2005. Effects of oligopeptide permease in group A streptococcal adhesion. 國立成功大學醫學檢驗生物技術研究所碩士論文。
紀仁智 2005. Expression and Characterization of IdeS, an IgG-degrading protease of Streptococcus pyogenes. 國立成功大學生物化學暨分子生物學研究所碩士論文。