簡易檢索 / 詳目顯示

研究生: 葉弘鈞
Yeh, Hung-Chub
論文名稱: 離子空間效應對於電動/壓力驅動與逆向電透析流於奈米管道之能量轉換研究
Energy Harvesting from Electrokinetic / Pressure-Driven Flows with Steric Effect and Reverse Electrodialysis in Nanospace
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 101
中文關鍵詞: 奈米流體電動力學空間效應流動電位勢流動電流逆向電透析擴散電位勢擴散電流
外文關鍵詞: Nanofluidics, Electrokinetics, Steric effect, Streaming potential, Streaming current, Reverse electrodialysis, Diffusion potential, Diffusion current
相關次數: 點閱:137下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當一個管道的尺度接近於一個電荷層的厚度時(典型的厚度定義為10~100 nm),管道內的分子運動與非平衡效應與一般大尺度下的行為有很大的差別,尤其是針對溶質與溶劑的傳輸行為有顯著的作用,稱之為奈米流體。然而,奈米流體並非是全新領域,此領域的研究隱含在許多的科學研究上,如細胞膜生理學、膠體科學和薄膜科學等等,近年來隨著微流體與奈米科技的進步,針對奈米尺度下的流體運動行為問題已經吸引許多人的關注與興趣。
    此論文的第一部份,利用修正後的波以松-波茲曼模型去模擬調查針對電動/壓力驅動具有離子空間效應的電解液傳輸於奈米隙縫與奈米圓管能量轉換上的差異性。其結果顯示當考慮有限離子尺寸大小時在所有不同的電解液濃度下,流動電導值皆會增加,特別是在較高的表面電荷密度下更為明顯。而主要造成流動電導值增加的原因是在於奈米空間內靜電荷密度在有考慮有限離空間時皆被放大。更進一步的比較奈米隙縫與奈米圓管的流動電導值,發現奈米圓管的流動電導值被放大的程度比奈米隙縫更為明顯,其原因是奈米圓管的幾何效應使靜電荷密度被集中放大。最後,發現當考慮有限離子空間時的電解液流動於兩種奈米空間內電滲流的貢獻使得電子電導值增加,特別是在較高的表面電荷密度下。
    此論文的第二部份,利用波以松-能斯特-布郎克方程式來模擬調查逆向電透析機制在帶有負的表面電荷密度錐形奈米孔洞內的現象分析。此研究考慮三種不同的電解液,分別是氯化鉀、氯化鈉和氯化鋰,並且去探討不同濃度梯度、表面電荷密度與擴散係數對於逆向電透析系統電流電壓特性曲線與能量轉換係數的效應。結果顯示當擴散方向從奈米孔動的底側到尖端側,此時陽離子的遷移數會增加,其原因為在奈米孔洞的尖端側發生電雙層重疊的現象,使得逆向電透析系統的轉換效率較高於擴散方向從尖端側到底側。換句話說,逆向電透析系統在錐形奈米孔洞內的擴散方向決定轉換效率的優劣。此外,結果還顯示當陽離子與陰離子的擴散係數接近時,系統的轉換效率會增加。然而,針對陽離子的擴散係數小於陰離子的擴散係數時,系統的擴散電流與擴散電壓會發生反向的電流電壓特性曲線表現。而且,結果還顯示在較低的表面電荷密度下轉換效率會隨著濃度梯度增加而增加。最後,此項研究發現最大的轉換效率值可高達45%。

    As the channel size approaches the thickness of the charged layer (typically, 10~100 nm), the resulting molecular and non-equilibrium effects are markedly different from those observed in larger channels and have a significant effect on the transport behavior of solutes and solvents. As a result, the problem of modeling fluidic behavior at the nanoscale has attracted increasing interest in recent years.
    In the first part of this thesis, simulations based on a Poisson-Boltzmann model, suitably modified to take account of the steric (i.e., finite ion-size) effect, are performed to investigate the ionic transport phenomenon within two nanofluidic confinements, namely a nanoslit and a nanotube, for the case of both electrokinetic and pressure-driven flows. The results show that for all values of the electrolyte concentration, the streaming conductance increases when the steric effect is taken into account; particularly under high surface charge density conditions. In addition, it is shown that the steric effect amplifies the net charge density in both confinements. The enhancement in the streaming conductance is particularly pronounced in the nanotube since the geometry effect of the nanotube results in a greater amplification of the net charge density. Finally, it is shown that for both nanofluidic confinements, the contribution of electroosmotic flow (EOF) to the electrical conductance increases when the finite ion size is taken into account.
    In the second part of the thesis, numerical simulations based on the full Poisson-Nernst-Planck (PNP) equations are performed to investigate the reverse electrodialysis (RED) phenomenon in negatively-charged conical nanopores. The simulations consider three different salts, namely KCl, NaCl and LiCl, and examine the effects of the concentration gradient, surface charge density and diffusion coefficient on the current-voltage characteristics and energy conversion efficiency of the RED system. It is shown that when diffusion takes place from the base side of the nanopore to the tip side, the transference number of counter-ions ( ) is enhanced due to an overlapping of the electrical double layer (EDL) in the tip region. As a result, the higher energy conversion efficiency of RED than the salt ion diffusion from the tip side to the base side, i.e., the RED performance of the conical nanopore is dependent on the direction of salt concentration gradient. In addition, the results show that the conversion efficiency also increases as the diffusion coefficient of the positive ions ( ) approaches that of the negative ions ( ). For , the diffusion current and diffusion potential in the negatively-charged conical nanopore show negative on the current-voltage characteristics. Moreover, the conversion efficiency also increases with an increasing concentration gradient given a small surface charge density. For the RED device considered in the present research, the maximum power conversion efficiency is found to be around 45%.

    ABSTRACT I 摘要 III 致謝 IV TABLE OF CONTENTS V LIST OF TABLES IX LIST OF FIGURES X ABBREVIATIONS XV NOMENCLATURE XVI CHAPTER 1 INTRODUCTION 1 1.1 NANOFLUIDICS AND ITS APPLICATIONS 1 1.2 ENERGY CONVERSION IN MICRO/NANOFLUIDIC CHANNELS 4 1.3 ELECTROKINETIC PHENOMENON 6 1.3.1 Electrical double layer (EDL) 6 1.3.2 Surface charge density 8 1.3.3 Electrical potential and ionic distribution in EDL 11 1.3.4 Overlapped EDL 13 1.3.5 Electroosmosis and surface conduction 15 1.3.6 Micro/nanoscale flow and ion transport 19 1.4 SCOPE AND OVERVIEW OF THESIS 21 CHAPTER 2 THEORETICAL AND NUMERICAL MODELS 23 2.1 ELECTROKINETIC ENERGY CONVERSION 23 2.1.1 Onsager reciprocal relation 23 2.1.2 Maximum power generation 25 2.1.3 Maximum conversion efficiency 26 2.2 MODIFIED POISSON-BOLTZMANN (PB) EQUATION AND MODIFIED POISSON-NERNST-PLANCK (PNP) MODEL 28 2.3 GENERAL NUMERICAL MODEL 32 2.3.1 Governing equations 32 2.3.2 Boundary conditions for generation mode 34 2.3.3 Boundary conditions for pumping mode 35 CHAPTER 3 ELECTROKINETIC/PRESSURE-DRIVEN FLOW IN NANOSLITS AND NANOTUBES WITH STERIC EFFECT 37 3.1 INTRODUCTION 37 3.2 PRINCIPLES 39 3.3 THEORETICAL ANALYSIS 41 3.3.1 Mathematical formulations 41 3.3.2 Finite difference method (FDM) 43 3.4 VALIDATION OF MATHEMATICAL MODEL 46 3.5 RESULTS AND DISCUSSION 47 3.5.1 Steric effect 48 3.5.2 Amplification of net charge density and streaming conductance 49 3.5.3 Amplification of electrical conductance 53 3.5.4 Energy conversion efficiency 55 CHAPTER 4 CHARACTERISTICS OF ENERGY HARVESTING FROM REVERSE ELECTRODIALYSIS IN CONICAL-SHAPED NANOPORES 59 4.1 INTRODUCTION 59 4.2 PRINCIPLES 61 4.3 NUMERICAL MODEL 62 4.3.1 Governing equation 64 4.3.2 Computational domain and boundary conditions 65 4.4 RESULTS AND DISCUSSION 67 4.4.1 Current-voltage (I-V) curve 69 4.4.2 Transference number 75 4.4.3 Energy conversion efficiency 77 4.4.4 Influence of diffusion coefficient 81 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 84 5.1 SUMMARY OF ACCOMPLISHMENTS 84 5.2 RECOMMENDATIONS FOR FUTURE WORK 85 REFERENCES 90 CURRICULUM VITAE 100

    Bikerman J. J., Structure and capacity of electrical double layer. Philos. Mag. Ser. 7, 33(220), 384, 1942.
    Borukhov I., and Andelman D., Steric effects in electrolytes: A modified Poisson-Boltzmann equation. Phys. Rev. Lett., 79, 435-438, 1997.
    Behrens S. H., and Borkovec M., Electrostatic interaction of colloidal surface with variable charge. J. Phys. Chem. B, 103, 2918-2928, 1999.
    Bard A.J., and Faulkner L.R., Electrochemical methods: Fundamentals and applications. New York: John Wiley, 2001.
    Bocquet L., and Barrat J. L., Flow boundary conditions from nano- to micro-scales. Soft Matter, 3, 685-693, 2007.
    Baldessari F., Santiago J.G., Electrokinetics in nanochannels: Part I. Electric double layer overlap and channel-to-well equilibrium. J. Colloid Interface Sci., 325, 526-538, 2008.
    Berg P., and Lidapo K., Exact solution of an electro-osmotic flow problem in a cylindrical channel of polymer electrolyte membranes. Proc. R. Soc. London, Ser. A: Math. Phys. Eng. Sci., 465, 2663-2678, 2009.
    Bocquet L. and Charlaix E., Nanofluidics, from bulk to interfaces. Chem. Soc. Rev., 39, 1073-1095, 2010.
    Bandopanhyay A., and Chakraborty S., Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-newtonian fluids in narrow confinements. Langmuir, 27, 12243-12252, 2011.
    Cervera J., Alcaraz A., Schiedt B., Neumann R., and Ramirez P., Asymmetric selectivity of synthetic conical nanopores probed by reversal potential measurements. J. Phys. Chem. C, 111, 12265-12273, 2007.
    Chandrakasan A.P., Verma N., and Daly D.C., Ultralowpower electronics for biomedical applications. Annual Review of Biomedical Engineering. 10, 247-274, 2008.
    Chang C-C, and Yang R-J, Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluids Nanofluidics, 9, 225-241, 2009 a.
    Chang C-C and Yang R-J, A perspective on streaming current in silica nanofluidic channels: Poisson–Boltzmann model versus Poisson–Nernst–Planck model. J. Colloid Interface Sci., 339, 517-520, 2009 b.
    Chang F-M, Chang Y-W, Sheng Y-J, and Tsao H-K, Size-dependent electro-osmosis in a microchannel with low-permittivity, salt-free media. Appl. Phys. Lett., 97, 164101, 2010.
    Chang C-C, and Yang R-J, Electrokinetic energy conversion efficiency in ion-selective nanopores. Appl. Phys. Lett., 99, 083102, 2011.
    Cao L., Guo W., Ma W., Wang L., Xia F., Wang S., Wang Y., and Jiang L., Zhu D., Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. Energy Environ. Sci., 4, 2259-2266, 2011.
    Chen C-L, and Yang R-J, Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels. Electrophoresis, 33, 751-757, 2012.
    Chang C-C, Yang R-J,Wang M., Miau J-J, and Lebiga V., Liquid retardation in nanospace due to electroviscosity: Electrical double layer overlap, hydrodymic slippage, and ambient atmospheric CO2 solution. Physics of Fluids., 24, 072001, 2012.
    Chang C-C, Kzoe Y., Morikawa K., Mawatari K., Yang R-J, Kitamori T., Numerical simulation of proton distribution with electric double layer in extended nanospaces. Anal. Chem., 85, 4468-4474, 2013.
    Davidson C., and Xuan X., Electrokinetic energy conversion in slip nanochannels. J. Power Sources, 179,297-300, 2008.
    Daiguji H., Ion transport in nanofluidic channels. Chem. Soc. Rev., 39, 901-911, 2010.
    Das S., and Chakraborty S., Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Phys. Rev. E,84, 012501, 2011.
    Dhiman P., Yavari F., Xi Mi X., Gullapalli H., Shi Y., Ajayan P.M., and Nikhil Koratkar N., Harvesting energy from water flow over graphene. Nano Lett., 11, 3123-3127, 2011.
    Eijkel J.C.T. and van den Berg A., Nanofluidics: what is it and what can we expect from it. Microfluid Nanofluid, 1, 249-267, 2005.
    Eijkel J., Liquid slip in micro-and nanofluidics: recent research and its possible implications. Lab Chip, 7, 299-301, 2007.
    Eijkel J.C.T. and van den Berg A., Nanofluidics and the chemical potential applied to solvent and solute transport. Chem. Soc. Rev., 39, 957-973, 2009.
    Fair J.C., Osterle J.F., Reverse electrodialysis in charged capillary membranes. J. Chem. Phys., 54, 3307-3316, 1971.
    Fei F., Mai J. D., and Li W. J., A wind-flutter energy converter for powering wireless sensors. Sensors and Actuators, A: Physical, 173, 163-171, 2012.
    Glockner P. S., and Naterer G. F, Recent advances in nano-electromechnical and microfluidic power generation. J. Energy Research, 31, 603-618, 2007.
    Garai A., and Chakraborty S., Steric effect and slip-modulated energy transfer in narrow fluidic channels with finite aspect ratios. Electrophoresis, 31, 843-849, 2010.
    Guo W., Cao L., Xia J., Nie F.Q., Ma W., Xue J., Song Y., Zhu D., Wang Y., and Jiang L., Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater., 20, 1339-1344, 2010.
    Gillespie D., High energy conversion efficiency in nanofluidic channels. Nano Lett., 12(3), 1410-1416, 2012.
    Healy T.W., and White L.R., Ionizable surface group models of aqueous interfaces. Adv. Colloid Interface Sci., 9, 303-345, 1978.
    Hunter R.J., Foundations of Colloid Science. Oxford, Oxford University Press, 2001.
    Huang D., Sendner C., Horinek D., Netz R., and Bocquet L., Water slippage versus contact angle: a quasiuniversal relationship. Phys. Rev. Lett., 101, 226101, 2008.
    Huang K-D and Yang R-J, Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfuuidic Nanofluidic, 5, 631-638, 2008.
    Israelachvili J., Intermolecular and Surface Force. Academic Press, London, 2nd edn, 1992.
    Jensen K.L., Kristensen J.T., Crumrine A.M., Andersen M.B., Bruus H., and Pennathur S., Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels. Phys. Rev. E, 83, 056307, 2011.
    Kim H., Auyeung R.C.Y. and Pique A., Laser-printed thick-film electrodes for solid-state rechargeable Li-ion microbatteries. J. Power Sources, 165(1), 413-419, 2007 a.
    Kim S.J., Wang Y.C., Lee J.H., Jang H., and Han J., Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett., 99, 044501 , 2007 b.
    Kilic M.S., Bazant M.Z., and Ajdari A., Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E, 75, 021502, 2007 a.
    Kilic M.S., Bazant M.Z., and Ajdari A., Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E, 75, 021503, 2007 b.
    Kjeang E., Djilali N., and Sinton D., Microfluidic fuel cells: a review. Journal of Power Sources, 186, 353-369, 2009.
    Kim S.J., Song Y.A., and Han J., Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chem. Soc. Rev., 39, 912-922, 2010 a.
    Kim D.K., Duan C., Chen Y.F., and Majumdar A., Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluids Nanofluidics, 9, 1215-1224, 2010 b.
    Kim D.K., Numerical study of power generation by reverse electrodialysis in ion-selective nanochannels. J. Mech. Sci. Tech., 25, 5-10, 2011.
    Krupenkin T., and Taylor J. A., Reverse electrowetting as a new approach to high-power energy harvesting, Nature Comm., 2, 448, 2011.
    Kwon K., Park C.W., and Kim D., High-flowrate, compact electroosmotic pumps with porous polymer track-etch membranes. Sensors and Actuators A, 175, 108-115, 2012.
    Kwak R., Pham V.S., Lim K.M., and Han J., Shear flow of an electrically charged fluid by ion concentration polarization: Scaling laws for convection vortices. Phys. Rev. Lett., 110, 114501, 2013.
    Lyklema J., Fundamentals of interface and colloid science. Volume II: solid-liquid interface. San Diego, Academic Press, 1995.
    Levine S., Marriott J.R., Neale G., and Epstein N., Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J. Colloid Interface Sci., 52, 136-149, 1975.
    Liu S, Pu Q, Gao L, Korzeniewski C, Matzke C, From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett. 5, 7, 1389-1393, 2005.
    Lee J. W., and Kjeang E., Nanofluidic fuel cell, J. Power Sources, 242, 472-477, 2013.
    Mijatovic D., Eijkel J. C. T., and van den Berg A., Technologies for nanofluidic systems: top-down vs. bottom-up-a review. Lab Chip, 5, 492-500, 2005.
    Masliyah J.H., Bhattacharjee S., Electrokinetic and colloid transport phnomena. New Jersy, John Wiley &Sons, 2006.
    Meagher R.J., and Thaitrong N., Microchip electrophoresis of DNA following preconcentration at photopatterned gel membranes. Electrophoresis, 33, 1236-1246, 2012.
    Osterle J.F., Electrokinetic energy conversion. J Appl Mech, 31, 161-164, 1964.
    Pattle R.E., Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 174, 660, 1954.
    Plecis A., Schoch R.B., and Renaud P., Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Letters, 5, 1147-1155, 2005.
    Pennathur S., Eijkel J., and van den Berg A., Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab Chip, 7, 1234-1237, 2007.
    Qu W., and Li D., A model for overlapped EDL fields. J. Colloid Interface Sci., 224, 397-407, 2000.
    Ren Y., and Stein D., Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology, 19, 195707, 2008.
    Stein D., Kruithof M., and Dekker C., Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett., 93, 035901, 2004.
    Schoch R.B., and Renaud P., Ion transport through nanoslits dominated by the effective surface charge. Appl. Phys. Lett., 86, 253111, 2005.
    Schoch R.B., Han J., and Renaud P., Transport phenomena in nanofluidics. Rev. of Mod. Phy., 8, 840-875, 2008.
    Sparreboom W., van der Berg A., and Eijkel J.C.T., Principles and applications of nanofluidic transport. Nature Nanotech., 4, 713-720, 2009.
    Shen M., Yang H., Sivagnanam V., and Gijs M.A.M., Microfluidic protein preconcentrator using a microchannel-integrated nafion strip: Experiment and modeling. Anal. Chem., 82, 9989-9997, 2010.
    Stein D., Deurvorst Z., ven der Heyden F. H. J., Koopmans W. J. A., Gabel A., and Dekker C., Electrokinetic concentration of DNA polymers in nanofluidic channels. Nano Lett., 10, 765-772, 2010.
    Siria A., Poncharal P., Biance A.-L., Fulcrand R., Blase X., Purcell S.T., Bocquet L., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature, 494, 455-458, 2013.
    van der Heyden F.H.J., Bonthuis D.J., Stein D., Meyer C., and Dekker C., Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett., 7, 1022-1025, 2007.
    Vlassiouk I., Smirnov S., and Siwy Z., Ionic selectivity of single nanochannels. Nano Lett., 8, 7, 1978-1985, 2008.
    van der Berg A., Craighead H.G., and Yang P., From microfluidic applications to nanofluidic phenomena. Chem. Soc. Rev., 39, 899-890, 2010.
    van Honschoten J.W., Brunets N., and Tas N.R., Capillarity at the nanoscale. Chem. Soc. Rev., 39, 1096-1114, 2010.
    Vermaas D.A., Veerman J., Yip N.Y., Elimelech M., Saakes M., and Nijmeijer K., High efficiency in energy generation from salinity gradients with reverse electrodialysis. ACS Sustainable Chem. Eng.,1(10), 1295-1302, 2013.
    Weisz, P.B., Basic choices and constraints on long-term energy supplies. Physics Today,. 57(7), 47-52, 2004.
    Weiss L.W., Cho J.H., McNeil K.E., Richards C.D., Bahr D.F. and Richards R.F., Characterization of a dynamic micro heat engine with integrated thermal switch. J. Micromech. Microeng., 16(9), S262-S269, 2006.
    Wang M., and Chen S., On applicability of Poisson-Boltzmann equation for micro- and nanoscale electroosmotic flows. Comm. In Comp. Phys., 3, 1087-1099, 2008.
    Wadsworth C. J., Yanagisawa N., Dutta D., Nanochannel arrays as supports for proton exchange membrane in microfluidic fuel cells. J. Power Sources, 195, 3636-3639, 2010.
    Wang M., Chang C-C, and Yang R-J, Electroviscous effects in nanofluidic channels. J. Chem. Phys, 132, 024701, 2010.
    Xuan X. and Li D., Thermodynamic analysis of electrokinetic energy conversion. J. Power Sources, 156, 677-684, 2006.
    Xu Z., Miao J., Wang N., and Wen W., Sheng P., Maximum efficiency of the electro-osmotic pump. Phys. Rev. E, 83, 066303, 2011.
    Yeh L-H, Xue S., Joo S. W., Qian S., and Hsu J-P, Ion concentration polarization in polyelectrolyte-modified nanopores. J. Phys. Chem. C, 116, 4209-4216, 2012.
    Yeh L-H, Zhang M., and Qian S., Ion transport in a pH-regulated nanopore. Anal. Chem., 85, 7527-7534, 2013.
    Yao H., Zheng G., Li W., McDowell M.T., Seh Z., Liu N., Lu Z., and Cui Y., Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett., 13, 3385-3390, 2013.
    Zangle T.A., Mani A., and Santiago J.G., Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem. Soc. Rev., 39, 1014-1035, 2010.

    下載圖示 校內:2016-03-30公開
    校外:2016-03-30公開
    QR CODE