簡易檢索 / 詳目顯示

研究生: 徐俊傑
Hsu, Chun-Chieh
論文名稱: 透過人工纖毛擺動行為及其流場效應提升微尺度混合器之效率
Efficiency enhancement of an active micromixer through the control of artificial cilia beating behaviors
指導教授: 陳嘉元
Chen, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 實驗室晶片微尺度混合人工纖毛微粒子影像測速儀
外文關鍵詞: Lab-on-a-chip, Micromixing, Artificial cilia, Micro particle image velocimetry
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在實驗室晶片 (Lab-On-a-Chip) 應用中一項重要的功能是如何將流體在微小型之裝置上進行快速且均勻的微尺度混合 (Micromixing),這對於在生物醫學和化學檢測等領域上具有實質的效益。目前主動式人工纖毛 (Artificial cilia) 微混合器被視為非常有效促進分子擴散效率的機制,透過人工纖毛的擺動將欲混合的流體進行不斷地拉伸與重疊,達到在短時間內均勻混合的效果,因此非常適合應用在極端的流場條件 (例如具有高黏性的流體)。然而,截至目前為止扔然沒有一套人工纖毛擺動標準範例的提出,說明如何達到最佳的混合效率。因此本研究根據流體動力學之概念,設計出幾種代表性的人工纖毛擺動模式,來描述人工纖毛擺動與週圍引起的流場效應之間的交互關係,並藉由微粒子影像測速儀 (Micro particle image velocimetry, µPIV) 的量測來獲得瞬時流場分佈。當人工纖毛的擺動模式同時滿足本研究所提出的三種條件時,其混合效率可在6秒鐘內上升44%。對於未來新設計的微混合器提供一個有效的設計依據,以促進實驗室晶片商品化的推動,縮短檢測的時程。

    In the lab-on-a-chip application, it has been always an important aspect to miniaturize the micromixing device to attune uniform and rapid micro mixing. Active micromixing technology possesses significant interest among the researchers, as uniform mixing can be achieved in a shorter period of time through compensating a very considerable amount of external energy. In microscale, fluid mixing through the actuation of artificial cilia has been found to be very effective. However, no standard artificial cilia beating protocols existed till date, through which best mixing performance can be achieved. Therefore, this study is specifically designed to understand the hydrodynamic behavior of several artificial cilia beating patterns and to clarify the interactions between the flow field and the artificial cilia beating within. The instantaneous flow field has been studied through micro particle image velocimetry measurement technique. Through this study, it was aimed to provide an artificial cilia based micromixer by which an efficient micromixing can be achieved in a shorter period of time.

    摘要 i 致謝 viii 目錄 ix 圖目錄 xii 表目錄 xv 符號表 xvi 一、緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 被動式微混合器 3 1.2.2 主動式微混合器 12 1.3 自然界中的纖毛 21 1.4 人工纖毛的應用與控制 23 1.5 人工纖毛微混合器 26 1.6 研究目標 28 二、研究方法 29 2.1 微混合器之結構設計 29 2.2 微製程技術之材料與方法 30 2.2.1 製作材料 30 2.2.2 微流道製作步驟 32 2.2.3 混合量測之前置步驟 33 2.3 電磁鐵平台 34 2.4 設備系統的控制與輸出 35 2.4.1 人機介面操作 36 2.4.2 PWM訊號輸出 37 2.4.3驅動電路系統 38 2.5 四種特殊軌跡 39 2.6 實驗架設 40 2.7 混合效率量化 42 2.8 流場可視化 43 2.9 流場量化 45 2.10 數值模擬 45 2.10.1 理想流體之假設 46 2.10.2 統御方程式 46 2.10.3 結構與材料設定 47 2.10.4 網格設定 47 2.10.5 網格驗證 48 2.10.6 初始條件設定 49 2.10.7 邊界條件設定 50 三、結果與討論 51 3.1 流道寬度設計 51 3.2轉動頻率設計 55 3.3 體積流率之設計 57 3.4 人工纖毛之彎曲測試 59 3.4.1 體積流率之效應 60 3.4.2 擺動頻率之效應 61 3.4.3 週期性擺動之效應 62 3.5 有人工纖毛與無人工纖毛之初始混合效率差異 64 3.6 四種擺動軌跡與兩種旋轉方向之混合結果 65 3.7 擾動範圍之效應 67 3.8 振動方向之效應 69 3.9 旋轉方向之效應 72 3.10 三維流場評估 76 四、結論與未來展望 79 4.1 結論 79 4.2 未來展望 80 參考文獻 81 作者經歷 88

    [1] A. H. Wu, F. S. Apple, W. B. Gibler, R. L. Jesse, M. M. Warshaw, R. Valdes, (1999). "National academy of clinical biochemistry standards of laboratory practice: recommendations for the use of cardiac markers in coronary artery diseases," Clinical Chemistry, vol. 45, pp.1104-1121.
    [2] V. Hessel, H. Löwe, F. Schönfeld, (2005)." Micromixers—a reviewon passive and active mixing principles," Chemical Engineering Science, vol. 60, pp. 2479-2501.
    [3] G. M. Whitesides, (2006). "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373.
    [4] H. Tsuchiya, M. Okochi, N. Nagao, M. Shikida, H. Honda, (2008). "On-chip polymerase chain reaction microdevice employing a magnetic droplet-manipulation system," Sensors and Actuators B: Chemical, vol. 130, pp. 583-588.
    [5] J. Ottino, (1990). "Mixing, chaotic advection, and turbulence," Annual Review of Fluid Mechanics, vol. 22, pp. 207-254.
    [6] D. C. W. Tan, L. Y. L. Yung, P. Roy, (2010). "Controlled microscale diffusion gradients in quiescent extracellular fluid," Biomedical Microdevices, vol. 12, pp. 523-532.
    [7] N. T. Nguyen, Z. Wu, (2004). "Micromixers—a review," Journal of Micromechanics and Microengineering, vol. 15, pp. R1-R16.
    [8] C. C. Hong, J. W. Choi, C. H. Ahn, (2004). "A novel in-plane passive microfluidic mixer with modified Tesla structures," Lab on a Chip, vol. 4, pp. 109-113.
    [9] M. Oddy, J. Santiago, J. Mikkelsen, (2001). "Electrokinetic instability micromixing," Analytical Chemistry, vol. 73, pp. 5822-5832.
    [10] M. Engler, N. Kockmann, T. Kiefer, P. Woias, (2004). "Numerical and experimental investigations on liquid mixing in static micromixers," Chemical Engineering Journal, vol. 101, pp. 315-322.
    [11] S. H. Wong, M. C. Ward, C. W. Wharton, (2004). "Micro T-mixer as a rapid mixing micromixer," Sensors and Actuators B: Chemical, vol. 100, pp. 359-379.
    [12] Z. Wu, N. T. Nguyen, X. Huang, (2004). "Nonlinear diffusive mixing in microchannels: theory and experiments," Journal of Micromechanics and Microengineering, vol. 14, pp. 604-611.
    [13] A. Soleymani, E. Kolehmainen, I. Turunen, (2008). "Numerical and experimental investigations of liquid mixing in T-type micromixers," Chemical Engineering Journal, vol. 135, pp. S219-S228.
    [14] F. G. Bessoth, A. Manz, (1999). "Microstructure for efficient continuous flow mixing," Analytical Communications, vol. 36, pp. 213-215.
    [15] P. Löb, K. S. Drese, V. Hessel, S. Hardt, C. Hofmann, H. Löwe, R. Schenk, F. Schönfeld, B. Werner, (2004). "Steering of liguid mixing speed in interdigital micro mixer-from very fast to deliberately slow mixing," Chemical Engineering and Technology, vol. 27, pp. 340-345.
    [16] J. Cha, J. Kim, S. K. Ryu, J. Park, Y. Jeong, S. Park, S. Park, H. C. Kim, K. Chun, (2006). "A highly efficient 3D micromixer using soft PDMS bonding," Journal of Micromechanics and Microengineering, vol. 16, pp. 1778-1782.
    [17] S. W. Lee, D. S. Kim, S. S. Lee, T. H. Kwon, (2006). "A split and recombination micromixer fabricated in a PDMS three-dimensional structure," Journal of Micromechanics and Microengineering, vol. 16, pp. 1067-1072.
    [18] T. W. Lim, Y. Son, Y. J. Jeong, D. Y. Yang, H. J. Kong, K. S. Lee, D. P. Kim, (2011). "Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length," Lab on a Chip, vol. 11, pp. 100-103.
    [19] T. Burghelea, E. Segre, I. B. Joseph, A. Groisman, V. Steinberg, (2004). "Chaotic flow and efficient mixing in a microchannel with a polymer solution," Physical Review E, vol. 69, pp. 066305.
    [20] V. Mengeaud, J. Josserand, H. H. Girault, (2002). "Mixing processes in a zigzag microchannel: finite element simulations and optical study," Analytical Chemistry, vol. 74, pp. 4279-4286.
    [21] M. Yi, H. H. Bau, (2003). "The kinematics of bend-induced mixing in micro-conduits," International Journal of Heat and Fluid Flow, vol. 24, pp. 645-656.
    [22] A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, G. M. Whitesides, (2002). "Chaotic mixer for microchannels," Science, vol. 295, pp. 647-651.
    [23] H. Wang, P. Iovenitti, E. Harvey, S. Masood, (2002). "Optimizing layout of obstacles for enhanced mixing in microchannels," Smart Materials and Structures, vol. 11, pp. 662-667.
    [24] Y. C. Lin, Y. C. Chung, C. Y. Wu, (2007). "Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel," Biomedical Microdevices, vol. 9, pp. 215-221.
    [25] K. Y. Tung, C. C. Li, J. T. Yang, (2009). "Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer," Microfluidics and Nanofluidics, vol. 7, pp. 545-557.
    [26] F. Okkels, P. Tabeling, (2004). "Spatiotemporal resonances in mixing of open viscous fluids," Physical Review Letters, vol. 92, pp. 038301.
    [27] I. Glasgow, N. Aubry, (2003). "Enhancement of microfluidic mixing using time pulsing," Lab on a Chip, vol. 3, pp. 114-120.
    [28] L. H. Lu, K. S. Ryu, C. Liu, (2002). "A magnetic microstirrer and array for microfluidic mixing," Journal of Microelectromechanical Systems, vol. 11, pp. 462-469.
    [29] H. Y. Lee, J. Voldman, (2007). "Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance," Analytical Chemistry, vol. 79, pp. 1833-1839.
    [30] J. T. Coleman, J. McKechnie, D. Sinton, (2006). "High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion," Lab on a Chip, vol. 6, pp. 1033-1039.
    [31] M. Jain, K. Nandakumar, (2013). "Optimal patterning of heterogeneous surface charge for improved electrokinetic micromixing," Computers and Chemical Engineering, vol. 49, pp. 18-24.
    [32] H. H. Bau, J. Zhong, M. Yi, (2001). "A minute magneto hydro dynamic (MHD) mixer," Sensors and Actuators B: Chemical, vol. 79, pp. 207-215.
    [33] D. Ahemd, X. Mao, B. K. Juluri, T. J. Huang, (2009). "A millisecond micromixer via single-bubble-based acoustic streaming," Lab on a Chip, vol. 9, pp. 2738-2741.
    [34] Z. Yang, H. Goto, M. Matsumoto, R. Maeda, (2000). "Active micromixer for microfluidic system using lead-zirconate-titanate (PZT)- generated ultrasonic vibration," Electrophoresis, vol. 21, pp. 116-119.
    [35] A. Shields, B. Fiser, B. Evans, M. Falvo, S. Washburn, R. Superfine, (2010). "Biomimetic cilia arrays generate simultaneous pumping and mixing regimes," Proceedings of the National Academy of Sciences, vol. 107, pp. 15670-15675.
    [36] S. Nonaka, H. Shiratori, Y. Saijoh, H. Hamada, (2002). "Determination of left–right patterning of the mouse embryo by artificial nodal flow," Nature, vol. 418, pp. 96-99.
    [37] J. C. Ho, K. N. Chan, W. H. Hu, W. K. Lam, L. Zheng, G. L. Tipoe, J. Sun, R. Leung, K. W. Tsang, (2001). "The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia," American Journal of Respiratory and Critical Care Medicine, vol. 163, pp. 983-988.
    [38] T. Mahmood, E. Saridogan, S. Smutna, A. Habib, O. Djahanbakhch, (1998). "The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube," Human Reproduction, vol. 13, pp. 2991-2994.
    [39] H. Machemer, (1972). "Ciliary activity and the origin of metachrony in paramecium: effects of increased viscosity," Journal of Experimental Biology, vol. 57, pp. 239-259.
    [40] J. M. den Toonder, P. R. Onck, (2013). "Microfluidic manipulation with artificial/bioinspired cilia," Trends in Biotechnology, vol. 31, pp. 85-91.
    [41] M. Sleigh, D. Barlow, (1976). "Collection of food by vorticella," Transactions of the American Microscopical Society, vol. 95, pp. 482-486.
    [42] J. M. den Toonder, F. Bos, D. Broer, L. Filippini, M. Gillies, J. de Goede, T. Mol, M. Reijme, W. Talen, H. Wilderbeek, (2008). "Artificial cilia for active micro-fluidic mixing," Lab on a Chip, vol. 8, pp. 533-541.
    [43] A. Alexeev, J. Yeomans, A. C. Balazs, (2008). "Designing synthetic, pumping cilia that switch the flow direction in microchannels," Langmuir, vol. 24, pp. 12102-12106.
    [44] H. Masoud, A. Alexeev, (2011). "Harnessing synthetic cilia to regulate motion of microparticles," Soft Matter, vol. 7, pp. 8702-8708.
    [45] Z. G. Mills, B. Aziz, A. Alexeev, (2012). "Beating synthetic cilia enhance heat transport in microfluidic channels," Soft Matter, vol. 8, pp. 11508-11513.
    [46] A. Tripathi, A. Bhattacharya, A. C. Balazs, (2013). "Size selectivity in artificial cilia−particle interactions: mimicking the behavior of suspension feeders," Langmuir, vol. 29, pp. 4616-4621.
    [47] M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, D. Babič, (2010). "Self-assembled artificial cilia," Proceedings of the National Academy of Sciences, vol. 107, pp. 1844-1847.
    [48] S. Khaderi, C. Craus, J. Hussong, N. Schorr, J. Belardi, J. Westerweel, O. Prucker, J. Rühe, J. M. den Toonder, P. Onck, (2011). "Magnetically-actuated artificial cilia for microfluidic propulsion," Lab on a Chip, vol. 11, pp. 2002-2010.
    [49] C. L. van Oosten, C.W. Bastiaansen, D. J. Broer, (2009). "Printed artificial cilia from liquid-crystal network actuators modularly driven by light," Nature Materials, vol. 8, pp. 677-682.
    [50] K. Oh, J. H. Chung, S. Devasia, J. J. Riley, (2009). "Bio-mimetic silicone cilia for microfluidic manipulation," Lab on a Chip, vol. 9, pp. 1561-1566.
    [51] K. Oh, B. Smith, S. Devasia, J. J. Riley, J. H. Chung, (2010). "Characterization of mixing performance for bio-mimetic silicone cilia," Microfluidics and Nanofluidics, vol. 9, pp. 645-655.
    [52] M. Rahbar, L. Shannon, B. L. Gray, (2013). "Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia," Journal of Micromechanics and Microengineering, vol. 24, pp. 025003.
    [53] Y. Ding, J. C. Nawroth, M. J. M. Ngai, E. Kanso, (2014). "Mixing and transport by ciliary carpets: a numerical study," Journal of Fluid Mechanics, vol. 743, pp. 124-140.
    [54] C. Y. Chen, C. Y. Lin, Y. T. Hu, L. Y. Cheng, C. C. Hsu, (2015). "Efficient micromixing through artificial cilia actuation with fish-schooling configuration," Chemical Engineering Journal, vol. 259, pp. 391-396.
    [55] C. Y. Chen, C. C. Hsu, K. Mani, B. Panigrahi, (2016). "Hydrodynamic influences of artificial cilia beating behaviors on micromixing," Chemical Engineering and Processing: Process Intensification, vol. 99, pp. 33-40.
    [56] Y. Fang, Y. Ye, R. Shen, P. Zhu, R. Guo, Y. Hu, L. Wu, (2012). "Mixing enhancement by simple periodic geometric features in microchannels," Chemical Engineering Journal, vol. 187, pp. 306-310.

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE