簡易檢索 / 詳目顯示

研究生: 蔡忠翰
Tsai, Zhong-Han
論文名稱: 深度學習應用於啟動機動力傳動模組品質檢測
Deep Learning-Based Quality Inspection of Starter Motor Power Transmission Modules
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 105
中文關鍵詞: 深度學習啟動機數位孿生品質檢測異常檢測
外文關鍵詞: Deep Learning, Starter Motor, Digital Twin, Quality Inspection, Anomaly Detection
相關次數: 點閱:47下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一套結合數位孿生與深度學習之啟動機動力傳動模組品質檢測系統,以取代傳統仰賴人工聽診與動力計判讀的主觀檢測方式。針對實驗資料取得不易之挑戰,本研究建立啟動機之數位孿生模型,模擬正常運作條件下之多維訊號,並大量生成通過樣本以進行非監督式預訓練,進一步提升模型初始權重品質與泛化能力。同時,本研究亦制定數據標準化規範,作為未來智慧檢測應用與資料共享之基礎。
    模型設計採用時序型Transformer自編碼器架構,藉由重建誤差進行異常偵測。訓練流程結合模擬資料預訓練與少量實測資料微調,並以皮爾森相關係數與穩態參數驗證模擬資料之合理性。實驗結果顯示,本系統能於有限資料下穩定辨識啟動機異常,驗證結合數位孿生與深度學習之品質檢測策略具實用性與可行性,未來可作為啟動機再製產業導入智慧檢測系統之依據。

    This study aims to develop a quality inspection system for starter motor power transmission modules by integrating digital twin technology with deep learning, replacing traditional subjective methods that rely on manual auscultation and dynamometer readings. To address the challenge of limited experimental data, a digital twin model of the starter motor was constructed to simulate multi- dimensional signals under normal operating conditions, enabling the large-scale generation of pass samples for unsupervised pre-training. This approach enhances the quality of the model's initial weights and improves its generalization capability. In addition, a data standardization protocol was established to serve as a foundation for future applications in intelligent inspection and data sharing.
    The model adopts a time-series Transformer autoencoder architecture, performing anomaly detection through reconstruction error. The training process combines simulated data pre-training with fine-tuning using a small amount of measured data, while the validity of the simulated data is verified through Pearson correlation coefficients and steady-state parameters. Experimental results demonstrate that the proposed system can reliably identify starter motor anomalies even under limited data conditions, confirming the practicality and feasibility of a quality inspection strategy that integrates digital twin and deep learning. This work can serve as a reference for introducing intelligent inspection systems in the starter motor remanufacturing industry.

    摘要 ii Abstract iii 致謝 xvi 目錄 xvii 表目錄 xx 圖目錄 xxi 符號表 xxvi 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.2.1 實際檢測流程 2 1.2.2 現況問題 2 1.3 研究目的 3 1.4 文獻回顧 5 1.4.1 異常檢測 5 1.4.2 遷移學習 7 1.4.3 數位孿生技術 8 1.4.4 雙埠網路架構 10 1.5 本文架構 11 第二章 數學模型建置 13 2.1 啟動機介紹 13 2.2 雙端網路架構 14 2.3 電源端數學模型 15 2.4 永磁直流有刷馬達數學模型(含換向器與碳刷) 16 2.5 動力傳動模組 20 2.5.1 行星齒輪減速機 20 2.5.2 電磁開關數學模型 21 2.6 齒輪卡榫數學模型 21 2.7 動力計數學模型 22 第三章 深度學習 24 3.1 預先訓練 24 3.2 訓練策略 25 3.3 資料蒐集與前處理 27 3.4 深度學習模型 28 3.4.1 轉換模型 28 3.4.2 針對啟動機品質檢測任務的模型架構 31 第四章 實驗結果與討論 35 4.1 實驗設置 35 4.1.1 硬體介紹 35 4.1.2 軟體使用 37 4.1.3 硬體架構與數位孿生 38 4.2 量測流程與結果 40 4.3 數據標準化 46 4.4 訓練環境與超參數選擇 48 4.5 模型訓練結果與討論 50 第五章 品質檢測系統設計 59 5.1 圖形使用者介面設計 59 5.1.1 檢驗報告與量測資料之對映 59 5.1.2 圖形化使用者介面 62 5.2 圖形使用者介面驗證 64 第六章 結論與未來建議 67 6.1 結論 67 6.2 未來建議 67 參考資料 69

    [1] M. Ali and S. Evans, "The impact of best practice on energy efficiency in industrial decarbonization policy," Energy Policy, vol. 204, p. 114632, 2025.
    [2] J. I. Chowdhury, Y. Hu, I. Haltas, N. Balta-Ozkan, G. J. Matthew, and L. Varga, "Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors," Renewable and Sustainable Energy Reviews, vol. 94, pp. 1153–1178, 2018.
    [3] R. Saidur, "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, vol. 14, no. 3, pp. 877–898, 2010.
    [4] A. Vijaya, J. P. S. Meisterknecht, L. S. Angreani, and H. Wicaksono, " Advancing sustainability in the automotive sector: A critical analysis of environmental, social, and governance (ESG) performance indicators," Cleaner Environmental Systems, vol. 16, 100248, 2025.
    [5] P. Rathore, S. Kota, and A. Chakrabarti, "Sustainability through remanufacturing in India: a case study on mobile handsets," Journal of Cleaner Production, vol. 19, no. 15, pp. 1709–1722, 2011.
    [6] K. Govindan, K. M. Shankar, and D. Kannan, "Application of fuzzy analytic network process for barrier evaluation in automotive parts remanufacturing towards cleaner production – a study in an Indian scenario," Journal of Cleaner Production, vol. 114, pp. 199–213, 2016.
    [7] W. Liu, W. Ma, Y. Hu, M. Jin, K. Li, X. Chang, and X. Yu, "Production planning for stochastic manufacturing/remanufacturing system with demand substitution using a hybrid ant colony system algorithm," Journal of Cleaner Production, vol. 213, pp. 999–1010, 2019.
    [8] A. J. Martyr and D. R. Rogers, "Dynamometers: the measurement and control of torque, speed, and power," in Engine Testing, 5th ed., A. J. Martyr and D. R. Rogers, Eds. Oxford, U.K.: Butterworth-Heinemann, 2021, ch. 9, pp. 235–263.
    [9] J. Zipfel, F. Verworner, M. Fischer, U. Wieland, M. Kraus, and P. Zschech, "Anomaly detection for industrial quality assurance: A comparative evaluation of unsupervised deep learning models," Computers & Industrial Engineering, vol. 177, 109045, 2023.
    [10] F. Kähler, O. Schmedemann, and T. Schüppstuhl, "Anomaly detection for industrial surface inspection: application in maintenance of aircraft components," Procedia CIRP, vol. 107, pp. 246–251, 2022.
    [11] B. Jung, H. You, and S. Lee, "Anomaly candidate extraction and detection for automatic quality inspection of metal casting products using high-resolution images," Journal of Manufacturing Systems, vol. 67, pp. 229–241, 2023.
    [12] K. Choi, J. Yi, C. Park, and S. Yoon, "Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines," IEEE Access, vol. 9, pp. 120043–120065, 2021
    [13] P. Yan et al., "A comprehensive survey of deep transfer learning for anomaly detection in industrial time series: Methods, applications, and directions," IEEE Access, vol. 12, pp. 3768–3789, 2024.
    [14] Y. Wei, J. Jang-Jaccard, W. Xu, F. Sabrina, S. Camtepe and M. Boulic, "LSTM-Autoencoder-Based Anomaly Detection for Indoor Air Quality Time-Series Data," in IEEE Sensors Journal, vol. 23, no. 4, pp. 3787-3800, 15 Feb.15, 2023.
    [15] J. Kim, H. Kang, and P. Kang, "Time-series anomaly detection with stacked Transformer representations and 1D convolutional network," Eng. Appl. Artif. Intell., vol. 120, p. 105964, 2023.
    [16] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, "A survey on deep transfer learning," arXiv preprint arXiv:1808.01974, 2018.
    [17] C. M. A. Roelofs, C. Gück, and S. Faulstich, "Transfer learning applications for autoencoder-based anomaly detection in wind turbines," Energy and AI, vol. 17, 100373, 2024.
    [18] C. M. A. Roelofs, C. Gück, and S. Faulstich, "Transfer learning applications for autoencoder-based anomaly detection in wind turbines," Energy and AI, vol. 17, 100373, 2024.
    [19] S. Shao, S. McAleer, R. Yan and P. Baldi, "Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning," in IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2446-2455, April 2019.
    [20] E. H. Glaessgen and D. S. Stargel, "The digital twin paradigm for future NASA and U.S. Air Force vehicles," in Proc. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf.—Special Session on the Digital Twin, Honolulu, HI, USA, Apr. 2012, AIAA Paper 2012-1818.
    [21] E. Glaessgen and D. Stargel, "The digital twin paradigm for future NASA and U.S. air force vehicles," April. 2012.
    [22] "Digital Twins and AI: Transforming Industrial Operations". Retrieved March 5, 2025, from https://www.reliableplant.com/Read/31897/digital-twins-ai.
    [23] J. Xia, R. Huang, J. Li, Z. Chen, and W. Li, "Digital twin-assisted fault diagnosis of rotating machinery without measured fault data," IEEE Transactions on Instrumentation and Measurement, vol. 73, Art. no. 3531210, pp. 1–10, 2024.
    [24] Y. Xiao, H. Shao, S. Han, Z. Huo, and J. Wan, "Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain," IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 5254–5263, Dec. 2022.
    [25] Y. Xu, Y. Sun, X. Liu, and Y. Zheng, "A digital-twin-assisted fault diagnosis using deep transfer learning," IEEE Access, vol. 7, pp. 19990–19999, 2019.
    [26] K. Feng, J. C. Ji, Y. Zhang, Q. Ni, Z. Liu, and M. Beer, "Digital twin-driven intelligent assessment of gear surface degradation," Mechanical Systems and Signal Processing, vol. 186, 109896, 2023.
    [27] Y. Zhang, J. C. Ji, Z. Ren, Q. Ni, F. Gu, K. Feng, K. Yu, J. Ge, Z. Lei, and Z. Liu, "Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing," Reliability Engineering & System Safety, vol. 234, 109186, 2023.
    [28] M. Xia, H. Shao, D. Williams, S. Lu, L. Shu, and C. W. de Silva, "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering & System Safety, vol. 215, 107938, 2021.
    [29] "Two-port network," Wikipedia. Apr. 23, 2024. Retrieved March 5, 2025, from https://en.wikipedia.org/w/index.php?title=Two-port_network&oldid=1220308047.
    [30] "Starter Motor Teardown and Feature Study". Retrieved March 5, 2025, from https://advancedstructures.in/starter-motor-teardown-and-feature-study/.
    [31] "How an Engine Starter Motor Works". Retrieved March 5, 2025, from https://youtu.be/kFsl5r34lCI?si=03om5ei4yUAANhRR.
    [32] 吳建諭,「永磁馬達特性快速檢測系統設計」,碩士論文,國立成功大學機械工程研究所,2010。
    [33] 黃子豪,「方塊圖解析三端口傳動機構之運動學關係」,碩士論文,國立成功大學機械所,2021。
    [34] 鄭博文,「數位孿生與熱影像於啟動機動力傳動模組健康評估」,碩士論文,國立成功大學機械所,2025。
    [35] 究準科技股份有限公司。Retrieved March 5, 2025, from https://www.join-precision.com/Motor-Test-System.
    [36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," CoRR, vol. abs/1706.03762, 2017.
    [37] Z. Zhang, G. Qiu, Y. Cheng, and M. Wang, "Densely‑connected Decoder Transformer for unsupervised anomaly detection of power electronic systems," J. Autom. Intell., to appear, available online May 30, 2025.
    [38] M. Rodríguez, D. P. Tobón, and D. Múnera, "A framework for anomaly classification in Industrial Internet of Things systems," Internet Things, vol. 29, art. no. 101446, 2025.
    [39] A. Altınörs, F. Yol, and O. Yaman, "A sound based method for fault detection with statistical feature extraction in UAV motors," Appl. Acoust., vol. 183, p. 108325, 2021.
    [40] M. Salem, S. Taheri and J. S. Yuan, "Anomaly Generation Using Generative Adversarial Networks in Host-Based Intrusion Detection," 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 2018, pp. 683-687.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE