簡易檢索 / 詳目顯示

研究生: 陳凱越
Tan, Kai-Yieh
論文名稱: 以消費者分群和資訊融合建立對產品外型之滿意度研究
An approach to model satisfaction of product form design by applying customer segmentation and information consolidation
指導教授: 謝孟達
shieh, meng-dar
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 93
中文關鍵詞: 資訊融合次序迴歸感性工學消費者滿意度
外文關鍵詞: consumer satisfaction, Kansei engineering, ordinal regression, information consolidation
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 了解消費者的滿意度,對任何力求進步的商業組織而言可說是基本的要求。同樣地,在產品設計領域裡,這也是一個很重要的項目。隨著科技的進步,專業的分工,以往單純依靠經驗法則所做的決策已然不足以應付。同時也因為以消費者為中心和使用者導向的風潮漸漸地越來越受到重視。然而過往的研究經常會忽略掉消費者偏好之間的差異度,導致建構出來的模型往往不足以闡述現實生活中的狀況,亦難以實際地被應用。
    本研究提出一個以感性工學為主的產品外型偏好預測模型,結合了消費者分群和資訊融合的概念。首先會以消費者之間異同的偏好應用Fuzzy C-means (模糊分類演算法)進行分群,求出每一消費者對於被劃分群組的隸屬程度,反映出實際情況裡的模糊性。接下來會使用Ordinal Regression(次序迴歸)來建立每一位消費者的偏好迴歸模型,基於一般大眾實際上比較不擅長如相關專家般為自身的喜好打上精準的分數,本研究讓使用者按照主觀意識將偏好的項目做排序並使用次序迴歸來建立個人預測的迴歸模型,並導入從模糊分群中求出各消費者對於群組的隸屬程度做為其影響權重,最終可利用於求出各群組對於研究對象的情感滿意度的狀況。此論文中以自行車做為演示預測模型的案例。

    Understanding the customer of satisfaction, is a baseline standard of performance and a
    possible standard of excellence for any business organization (Gerson, 1993) One of the most
    important issues concerning product design is consumer satisfaction, the empirical decision is no
    longer works sufficiently to assist industry/designer to have understanding therefore to have proper
    strategy when doing design and decision making. The importance on understanding consumer
    satisfaction in product design field is getting heavier as the concept of User-centered and
    Consumer-oriented have been promoted. however the unlikeness of consumer preference always
    out of consideration during previous researches ,thus the constructed prediction models aren’t fully
    interpret the real situation and hardly applied on practical application.
    This study proposes a prediction model based on Kansei Engineering, by applying the concept of
    consumer segmentation and information consolidation. First, consumers will be separated into
    different groups by applying FCM(fuzzy c-means) from their heterogeneous preference towards the studied object ,a membership showing the extent of each individual belonging towards group will be obtained to reflect the inherent vagueness of consumer segmentation. The extracted parameters
    showing different extent of influence from consumers were then treated as retrieval when constructing a mutual satisfaction model for each cluster by applying Ordinal Regression. A case study of bicycle is demonstrated in this study to explore the effectiveness of the proposed model .

    Table of Content Chapter 1 Introduction-------------------------------------------------------------------------- 1 1.1 Introduction-------------------------------------------------------------------------------- 1 1.2 Objective----------------------------------------------------------------------------------- 5 1.3 Range and Limitation------------------------------------------------------------------------ 6 1.4 Research Framework-------------------------------------------------------------------------- 7 Chapter 2 Literature Review----------------------------------------------------------------------9 2.1 Forming -------------------------------------------------------------------------------------9 2.2 Kansei Engineering--------------------------------------------------------------------------10 2.3 Affective satisfaction model2.4 Consumer segmentation---------------------------------------13 2.5 Information Consolidation-------------------------------------------------------------------15 2.6 Introduction of bicycle---------------------------------------------------------------------17 Chapter 3 Research Framework--------------------------------------------------------------------18 3.1 Outline of proposed affective satisfaction model of product form----------------------------18 3.2 Planning of implementation procedures-------------------------------------------------------20 3.3 Validation of gained data-------------------------------------------------------------------22 Chapter 4 Experiments Procedures----------------------------------------------------------------23 4.1 Construction of consumer segmentation-------------------------------------------------------23 4.2 Construction of satisfaction model----------------------------------------------------------27 4.3 Construction of aggregation satisfaction----------------------------------------------------29 Chapter 5 Result and Discussion-----------------------------------------------------------------34 5.1 Result of consumer segmentation-------------------------------------------------------------34 5.2 Result of constructing aggregated satisfaction model----------------------------------------40 Chapter 6 Conclusion and Suggestion-------------------------------------------------------------56 6.1 Contribution of this study------------------------------------------------------------------57 6.2 Suggestion for further study----------------------------------------------------------------58 Reference---------------------------------------------------------------------------------------59 Appendix----------------------------------------------------------------------------------------62

    1. Bloom, J. (2004). Tourist market segmentation with linear and non-linear techniques. Tourism
    Management, 25, 723-733.
    2. T, Bock. & Uncles M. (2002). A taxonomy of differences between consumers for market
    segmentation. International Journal of Research in Marketing, 19, 215-224.
    4. Cheung, K. W., Kwok J. T., Law M. H. & Tsui K. C. (2003). Mining customer product ratings
    for personalized marketing. Decision Support Systems, 35, 231-243.
    3. Gerson, R.F., 1993. Measuring Customer Satisfaction. Menlo Park, CA, USA.
    4. D, Dubois. & Prade. H (2004). On the use of aggregation operations in information fusion
    processes. Fuzzy Sets and Systems, 142, 143-161.
    5. Han, S. H., Kim K. J, Yun M. H. & Hong S. W. (2004). Identifying mobile phone design
    features critical to user satisfaction. Human Factors and Ergonomics in Manufacturing, 14(1),
    15-29.
    6. Grabisch, M. (1995). Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems,
    69, 279-298.
    7. Huang, J. J., Tzeng G. H. & Ong C. S. (2007). Marketing segmentation using support vector
    clustering. Expert Systems with Applications, 32, 313-317.
    8. Jang, S. C., Morrison A. M. & O'Leary J. T. (2002). Benefit segmentation of Japanese pleasure
    travelers to the USA and Canada: selecting target markets based on the profitability and risk of
    individual market segments. Tourism Management, 23, 367-378.
    9. Jacobs, R., Jordan. M, Nowlan S. & Hinton G. (1991). Adaptive mixtures of local experts.
    Neural Computation, 3(1), 79-87.
    10. Jindo, T., Hirasago K. & Nagamachi M. (1995). Development of a design support system for
    office chairs using 3-D graphics. International Journal of Industrial Ergonomics, 15, 49-62.
    11. Lee, M. D. & Pope K. J. (2003). Avoiding the dangers of averaging across subjects when using
    multidimensional scaling. Journal of Mathematical Psychology, 47, 32-46.
    12. MacKay, D. (2006). Chemometrics, econometrics, psychometrics—How best to handle
    hedonics? Food Quality and Preference, 17, 529-535.
    13. Makropoulos, C. K. & Butler D. (2006). Spatial ordered weighted averaging: incorporating
    spatially variable attitude towards risk in spatial multi-criteria decision-making. Environmental
    Modelling & Software, 21, 69-84.
    14. Mingoti, S. A. & Lima J. O. (2006). Comparing SOM neural network with fuzzy c-means,
    k-means and traditional hierarchical clustering algorithms. European Journal of Operational
    Research, 174, 1742-1759.
    15. Nagamichi, M., 1995, ‘‘Kansei Engineering: A New Ergonomic Consumer-Oriented
    Technology for Product Development,’’ Int. J. Ind. Ergonom., 15~1!,pp. 3–11.
    16. Neal, R. (1996). Bayesian Learning for Neural Networks. New York: Springer-Verlag.
    17. Norman, D.A. and Draper, S.W. (1986). User-Centered System Design: New Perspectives on
    Human-Computer Interaction. Lawrence Erlbaum, NJ.
    18. Donald A. Norman., (1990) < The Design of Everyday Things>, Doubleday Business
    19. Pal S. K., Mitra P., Mitra S. (2003). Rough-fuzzy MLP: modular evolution, rule generation, and
    evaluation. IEEE Transactions on Knowledge and Data Engineering, 15(1), 14-25.
    20. Perrone, P. Michael. & Leaon. N. Cooper (1993). When networks disagree: Ensemble methods
    for neural networks for speech and image processing London: Chapman and Hall.
    21. Sadig, R. & Tesfamariam S. (2007). Probability density functions based weights for ordered
    weighted averaging (OWA) operators: an example proof water quality indices. European Journal
    of Operational Research, 182, 1350-1368.
    22. Smith, W. (1956). Product differentiation and market segmentation as an alternative marketing
    strategy. Journal of Marketing, 21(1), 3-8.
    23. Tang, C., Heymann H. & Hsieh F. H. (2000). Alternatives to data averaging of consumer
    preference data. Food Quality and Preference, 11, 99-104.
    24. Torra, V. (2005). Aggregation operators and models. Fuzzy Sets and Systems, 156, 407-410.
    25. Tsai, H. C., Hsiao S. W. & Hung F. K. (2006). An image evaluation approach for
    parameter-based product form and color design. Computer-Aided Design, 38, 157-171.
    26. Yamamoto, K., Yoshikawa T. & Furuhashi T. (2005). Division method of subjects by
    individuality for stratified analysis of SD evaluation data. IEEE.
    27. Shieh, Meng-Dar, and Yang, Chih-Chieh (2008.08) “Classification model for product form
    design using fuzzy support vector machines,” Computers & Industrial Engineering, Volume 55,
    Issue 1, Pages 150-164.
    28. Shieh, Meng-Dar, and Yang, Chih-Chieh (2008.07) “Multiclass SVM-RFE for product form
    feature selection,” Expert Systems with Applications, Volume 35, Issue 1-2, Pages 531-541.
    29. Zhu, Y. M., Bentabet L., Dupuis O., Kaftandjian V., Babot D. & Rombaut M. (2002). Automatic
    determination of mass functions in Dempster-Shafer theory using fuzzy c-means and spatial
    neighborhood information for image segmentation. Optical Engineering, 41(4), 760-770.
    30. Introduction of Maslow’s hierarchy of needs
    http://en.wikipedia.org/wiki/Maslow's_hierarchy_of_needs 王宗興,自行車車架造型特徵對意
    象認知影響之研究,國立成功大學工業設計研究所碩士論文,2002。
    31. 陳肇杰,產品造型評價之研究,國立成功大學工業設計研究所碩士論文,1993。
    32. 台灣經濟研究院,自行車及其零組件業發展策略研究報告。
    33. 陳國祥,管倖生,鄧怡莘,張育銘,感性工學----將感性予以理性化的手法,工業設計2001,
    10 期,p2,2001。
    34. 黃俊英,多變量分析,中國經濟企業研究所,1986。
    35. 林師模,陳苑欽,多變量分析---管理上的應用,雙葉書廊,2006。

    下載圖示 校內:2009-08-29公開
    校外:2011-08-29公開
    QR CODE