簡易檢索 / 詳目顯示

研究生: 陳雨生
Chen, Yu-Sheng
論文名稱: 熱聲超材料於散熱和減噪之應用
Thermoacoustic Metamaterials for Heatsink and Noise-reduction Applications
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 117
中文關鍵詞: 有限元素法熱聲超材料冷卻減噪微波加熱
外文關鍵詞: Finite element method, Thermoacoustic metamaterial, Cooling, Noise reduction, Microwave heating
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要針對不同幾何形狀之熱聲超材料,當應用於物體表面時,進行有限元素模擬研究,探討其對材料熱學與聲學性質的影響。本文模擬分析四種不同物理模型,分別是半導體晶片冷卻、土木建築物牆面冷卻、物體微波加熱以及牆面減噪,期望透過表面的超材料來改善材料等校性質,以達到特定效果。在不同模型的模擬中,我們將超材料的幾何形狀變化分成三個方向,分別是改變超材料的柱狀物數量、形狀以及材料之間的間距,探討這三個設計方向對於各模型的影響。經由有限元素模擬顯示,在晶片冷卻的模型中,柱狀物的數量可以降低晶片表面的平均溫度,在空氣入流為0.1m/s的情形下,比起沒有超材料於晶片表面的模型,10x10單胞的設計可以減少5.5%的溫度;柱狀物的形狀部分,挖洞的方柱比起其他形狀有最佳的降溫效果;柱狀物的間距也影響散熱效果,間距越大其散熱效果越佳,以3mm以及0.1mm的間距結果為例,在入流為0.1m/s的情形下,可以減少約4.8%的溫度。牆面冷卻的模型中,超材料的使用僅能減緩室內溫度提高的速度,在假設牆外溫度固定且讓整體模型的溫度持續達到平衡的狀況下,牆面使用超材料時的室內溫度反而較高。微波加熱的模型中,柱狀物的數量與間距大小和加熱效率沒有相對應的關係;在形狀部分,金字塔超材料的模型比起沒有超材料於加熱物表面的模型,可以將加熱速率從0.055K/hr提升至1.447K/hr,相當於提升24倍。在牆面減噪的模型中,柱狀物的數量增加可以提升牆面在STL中整體的數值,也代表著超材料的密度對於減噪有一定的效果;從形狀的模擬中得出,10x10的情況下,比起沒有超材料的模型,方柱可以提升12%的平均STL值;間距部分,不同間距的超材料在不同頻率下則有各自的效果,此外改變幾何形狀可在以提升不同頻率區段的STL。

    Metamaterials are materials consisting of strongly human influenced microstructures or microprocesses. In this thesis, several designed of thermoacoustic metamaterials were conducted and analyzed for their effects on solid surface on the overall thermal and acoustic properties by using the finite element numerical method. In particular, the cooling of semiconductor chips and building walls was studied, as well as noise reduction and microwave heating. In design of the metamaterials, the aspect ratio of the surface struts and their shape and spacing are design parameters. In the chip cooling study, under 0.1 m/s air flow speed, it was found that a 5.5% reduction on metamaterial's surface temperature, as oppose to the unmodified surface, when the 10x10 unit cells were mounted. In addition, hollowed struts show better temperature-reducing capability. The strut spacing of 0.1 mm case shows a 4.8% temperature reduction when compared to the 3 mm spacing case. In the wall cooling study, the metamaterial can reduce the speed of temperature rising. It is expected that coolant fluid flow around the metamaterial is necessary to reduce indoor temperature. From the microwave study, it is found that the number and spacing of the struts on metamaterial do not affect heating performance. When the shape is pyramidal, heating rate increased from 0.055 K/hr to 1.447 K/hr, roughly a 24-fold increase. In the noise reduction study, the number of struts increase can enhance the overall sound transmission loss (STL) of the wall, indicating the mass effects of the metamaterials on noise reduction. Bandgap and other effects of metamaterials on noise reduction are not studied in the thesis. For the model with 10x10 unit cells, square struts can increase its averaged STL by about 12%, as oppose to unmodified surface. By tuning the strut spacing and shape, STL can be enhanced in certain frequency ranges.

    CHINESE ABSTRACT i ABSTRACT ii ACKNOWLEDGMENTS iii LIST OF TABLES vii LIST OF FIGURES ix NOMENCLATURE xvii 1 Introduction 1 1.1 Goals and motivation 1 1.2 Literature review 2 1.2.1 Metamaterial 2 1.2.2 Heatsink in semiconductor components 2 1.2.3 Cooling for building 5 1.2.4 Microwave heating 6 1.2.5 Acoustic and noise reduction 6 1.2.6 Laminar flow 7 1.3 Outline of this thesis 8 2 Theoretical Backgrounds 9 2.1 Heat equation 9 2.2 Thermoelasticity 9 2.2.1 Summary of equations 13 2.2.2 Constitutive law 13 2.2.3 Coupled thermoelasticity 15 2.2.4 Uncoupled thermoelasticity 17 2.3 Heat transfer 18 2.3.1 Conduction 18 2.3.2 Convection 20 2.3.3 Radiation 22 2.4 Microwave heating 23 2.5 Acoustics 25 3 Computational information 28 3.1 Finite element analysis 28 3.2 Numerical models 28 3.2.1 Chip cooling 28 3.2.1.1 Cases with different number of pin-fins 30 3.2.1.2 Cases with different shape of pin-fins 31 3.2.1.3 Cases with different spacing of pin-fins 32 3.2.2 Building cooling 34 3.2.2.1 Cases with different number of pin-fins 36 3.2.2.2 Cases with different shape of pin-fins 37 3.2.2.3 Cases with different spacing of pin-fins 38 3.2.3 Microwave heating 40 3.2.3.1 Cases with different number of pin-fins 41 3.2.3.2 Cases with different shape of pin-fins 42 3.2.3.3 Cases with different spacing of pin-fins 43 3.2.4 Noise reduction 45 3.2.4.1 Cases with different number of pin-fins 46 3.2.4.2 Cases with different shape of pin-fins 47 3.2.4.3 Cases with different spacing of pin-fins 48 4 Results and discussion 50 4.1 Chip cooling 50 4.1.1 Effects of the number of pin-fins 50 4.1.1.1 Cases with 0.01 m/s inflow 50 4.1.1.2 Cases with 0.1 m/s inflow 52 4.1.1.3 Cases with 1 m/s inflow 54 4.1.1.4 Temperature comparison 56 4.1.2 Effects of the shape of pin-fins 57 4.1.2.1 Cases with 0.01 m/s inflow 57 4.1.2.2 Cases with 0.1 m/s inflow 59 4.1.2.3 Cases with 1 m/s inflow 61 4.1.2.4 Temperature comparison 63 4.1.3 Effects of the spacing of pin-fins 64 4.1.3.1 Case study with 0.01 m/s inflow 64 4.1.3.2 Case study with 0.1 m/s inflow 66 4.1.3.3 Case study with 1 m/s inflow 68 4.1.3.4 Temperature comparison 70 4.2 Building cooling 71 4.2.1 Effects of the number of pin-fins 71 4.2.2 Effects of the shape of pin-fins 75 4.2.3 Effects of the spacing of pin-fins 78 4.3 Microwave heating 81 4.3.1 Effects of the number of pin-fins 81 4.3.2 Effects of the shape of pin-fins 83 4.3.3 Effects of the spacing of pin-fins 84 4.4 Noise reduction 86 4.4.1 Effects of the number of pin-fins 86 4.4.2 Effects of the shape of pin-fins 87 4.4.3 Effects of the spacing of pin-fins 89 4.4.4 Helmholtz resonator 91 5 Conclusion and future work 93 5.1 Conclusion 93 5.2 Future work 95 LIST OF REFERENCES 96 APPENDICES 99 Appendix A: Presentation slides 99 VITA 117 Index 118

    [1] T.-Y. Huang, C. Shen, and Y. Jing. Membrane- and plate-type acoustic metamaterials. The Journal of the Acoustical Society of America, 139(6):3240–3250, 2016.
    [2] Y. Hu, M. O. Hossen, Z.Wan, M. S. Bakir, and Y. Joshi. Compact transient thermal model of micro-fluidically cooled 3d stacked chips with pin-fin enhanced micro-gap. Journal of Electronic Packaging, 143, 01 2021.
    [3] V. Radmard, Y. Hadad, S. Rangarajan, C. H. Hoang, N. Fallahtafti, C. Arvin, K. Sikka, S. Schiffres, and B. Sammakia. Multi-objective optimization of a chip-attached micro pin fin liquid cooling system. Applied Thermal Engineering, 195:117187, 2021.
    [4] Y. Khetib, K. Sedraoui, A. A. Melaibari, A. Alzaied, R. Alsulami, and M. Sharifpur. Heat transfer and pressure drop in turbulent nanofluid flow in a pin-fin heat sink: Fin and nanoparticles shape effects. Case Studies in Thermal Engineering, 28:101378, 2021.
    [5] C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu, T. Xue, J. Fu, T. Cheng, X. Hu, H. J. Fan, and K. Liu. Bilayer porous polymer for efficient passive building cooling. Nano Energy, 85:105971, 2021.
    [6] W. Wei, Z. Shao, R. Qiao, W. Chen, H. Zhou, and Y. Yuan. Recent development of microwave applications for concrete treatment. Construction and Building Materials, 269:121224, 2021.
    [7] M. Kadic, T. B¨uckmann, R. Schittny, and M.Wegener. Metamaterials beyond electromagnetism. Reports on progress in physics. Physical Society (Great Britain), 76:126501, 11 2013.
    [8] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100:207402, May 2008.
    [9] L.-T. Yeh. Review of liquid cooled microelectronic equipment. Electronics and Communications in Japan (Part III Fundamental Electronic Science), pages 1 – 16, 04 2021.
    [10] M. Ekpu, R. Bhatti, N. Ekere, and S. Mallik. Advanced thermal management materials for heat sinks used in microelectronics. EMPC-2011 - 18th European Microelectronics and Packaging Conference, Proceedings, pages 1 – 8, 01 2011.
    [11] W. M. A. A. Japar, N. A. C. Sidik, R. Saidur, Y. Asako, and S. N. A. Yusof. A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges. Nanotechnology Reviews, 9:1192–1216, 12 2020.
    [12] S. S. Salvi and A. Jain. A review of recent research on heat transfer in three-dimensional integrated circuits (3d ics). IEEE Transactions on Components, Packaging and Manufacturing Technology, PP:1–1, 03 2021.
    [13] A. L. Moore and L. Shi. Emerging challenges and materials for thermal management of electronics. Materials Today, 17(4):163–174, 2014.
    [14] V. Venkatadri, B. Sammakia, K. Srihari, and D. Santos. A review of recent advances in thermal management in three dimensional chip stacks in electronic systems. Journal of Electronic Packaging, 133:041011, 12 2011.
    [15] M. W. Alam, S. Bhattacharyya, B. Souayeh, K. Dey, F. Hammami, M. Rahimi-Gorji, and R. Biswas. Cpu heat sink cooling by triangular shape micro-pin-fin: Numerical study. International Communications in Heat and Mass Transfer, 112:104455, 2020.
    [16] G. Karamanis and M. Hodes. Simultaneous Optimization of an Array of Heat Sinks. Journal of Electronic Packaging, 141(2), 02 2019.
    [17] I. Khorunzhii, H. Gabor, R. Job, W. Fahrner, and H. Baumann. Modelling of a pin-fin heat converter with fluid cooling for power semiconductor modules. International Journal of Energy Research, 27:1015 – 1026, 09 2003.
    [18] D. K. Bhamare, M. K. Rathod, and J. Banerjee. Passive cooling techniques for building and their applicability in different climatic zones - the state of art. Energy and Buildings, 198, 06 2019.
    [19] P. Saikia and D. Rakshit. Passive building cooling achieved with a new class of thermal retrofit: The liquid vapour phase change material. Energy and Buildings, 249:111238, 2021.
    [20] H. S. Mohaisen, J. A. Esfahani, and M. B. Ayani. Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study. Renewable Energy, 168:170–180, 2021.
    [21] E. I. Nefyodov and S. M. Smolskiy. Electromagnetic Fields and Waves – Microwave and mmWave Engineering with Generalized Macroscopic Electrodynamics. Springer, 2019.
    [22] K. Saito, T. Taniguchi, H. Yoshimura, and K. Ito. Estimation of sar distribution of a tipsplit array applicator for microwave coagulation therapy using the finite element method. IEICE Transactions on Electronics, E84.C:948–954, 07 2001.
    [23] K. Pitchai, J. Chen, S. Birla, R. Gonzalez, D. Jones, and J. Subbiah. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: Development and validation. Journal of Food Engineering, 128:60–71, 2014.
    [24] Y. D. Hong, B. Q. Lin, H. Li, H. M. Dai, C. J. Zhu, and H. Yao. Three-dimensional simulation of microwave heating coal sample with varying parameters. Applied Thermal Engineering, 93:1145–1154, 2016.
    [25] A. Litvin and H. W. Belliston. Sound transmission loss through concrete and concrete masonry walls. 1978.
    [26] A. Maurin and L. Kwapisz. Simplified method for calculating airborne sound transmission through composite barriers. Composite Structures, 276:114526, 2021.
    [27] K. H. Matlack, A. Bauhofer, S. Kr¨odel, A. Palermo, and C. Daraio. Composite 3d-printed metastructures for low-frequency and broadband vibration absorption. Proceedings of the National Academy of Sciences, 113(30):8386–8390, 2016.
    [28] W. M. Lai, D. Rubin, and E. Krempl. Introduction to Continuum Mechanics (Fourth Edition). Butterworth-Heinemann, Boston, 2010.
    [29] T. L. Bergman A. S. Lavine F. P. Incropera, D. P. DeWitt. Fundamentals of Heat and Mass Transfer, 6th Edition. John Wiley & Sons, 2006.
    [30] M. F. Modest. Radiative Heat Transfer, 2nd ed. Academic Press, San Diego, California, 2003.
    [31] D.T. Blackstock. Fundamentals of Physical Acoustics. Wiley, 2000.

    無法下載圖示
    2027-02-09公開
    電子論文及紙本論文均尚未授權公開
    QR CODE