| 研究生: |
林浩宇 Lin, Hau-Yu |
|---|---|
| 論文名稱: |
利用化學機械式研磨技術改善矽鍺虛擬基板以增進N型應變矽金氧半場效電晶體之研究 Investigation of Strained-Si NMOSFETs on SiGe Virtual Substrate with Chemical-Mechanical-Polishing Technique |
| 指導教授: |
吳三連
Wu, San-Lein 張守進 Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 矽鍺 、載子移動率 、差排 、金氧半場效電晶體 、1/f雜訊 、應變 、虛擬基板 |
| 外文關鍵詞: | SiGe, MOSFET, virtual substrate, 1/f noise, mobility, dislocation, strain |
| 相關次數: | 點閱:114 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們的利用矽鍺虛擬基板成長出N型應變矽金氧半場效電晶體(Strained-Si NMOSFET),因為能帶分離與等效質量下降,伸張應變矽可以提高電子的移動率,然而使用傳統矽鍺虛擬基板伴隨的是線差排(threading dislocation)的產生以及閘極氧化層與矽通道介面的粗糙,藉著利用化學機械式研磨(Chemical Mechanical Polishing)成功地降低線差排的密度以及得到較平整的閘極氧化層與矽通道介面。因此更進一步的提升了直流特性表現。
此外,由於線差排無疑地會在氧化層與通道層介面產生多餘的缺陷,而且閘極氧化層與矽通道介面的粗糙也會使載子移動率發生擾動,而1/f雜訊對其敏感度甚佳。使用化學機械式研磨改善矽鍺虛擬基板的應變矽場效電晶體,因為擁有較低的線差排以及較高的載子移動率,因而獲得較佳的1/f雜訊表現,因而也可以從此處獲得磊晶層品質改善的證據。
In this thesis, the strained-Si NMOSFETs structures are fabricated on the SiGe virtual substrate. Introduction of tensile strained-Si layer into Si-based structures is attributed to the fact that electron mobility can be enhanced due to energy band splitting and the reduction of effective mass. However, conventional SiGe virtual substrate usually accompanies the threading dislocation and the roughness of SiO2/Si interface. By utilizing the Chemical Mechanical Polishing technique (CMP), lower threading dislocation density and less interface roughness between SiO2 and Si are obtained. Consequently, DC performance has further been improved.
Additionally, roughness and the defect at interface between the channel and gate oxide generated by threading dislocation make the flicker noise performance worse. At the same way, observing the improvement of flicker noise property is also to prove the superiority of the application of CMP.
[1.1] G. E. Moore, “ Gramming More components onto integrated circuits,” Electronics 38, 1965.
[1.2] B. Yu, H. Wang, C. Riccobene, Q. Xiang; M. R. Lin,” Limits of gate-oxide scaling in nano-transistors,” VLSI symp., pp. 90-91, 2000.
[1.3] L.-A. Ragnarsson, L. Pantisano, V. Kaushik, S.-I. Saito, Y. Shimamoto, S. D. Gendt, M. Heyns, “The impact of sub monolayers of HfO/sub/ on the device performance of high-k based transistors,” IEDM Tech. Dig. pp. 4.2.1 - 4.2.4, 2003.
[1.4] D. A. Dallmann, K. Shenai, “Scaling constraints imposed by self-heating in submicron SOI MOSFET's,” IEEE Trans. Electron Dev. Vol. 42, 3, pp. 489 - 496, 1995.
[1.5] T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “ Electron and hole mobility enhancement in strained-Si MOSFET’s on SiGe-on-Insulator substrates fabricated by SIMOX technology,” IEEE Electron Dev. Lett., vol. 21, pp. 230-232, 2000.
[1.6] M. L. Lee, and E. A. Fitzgerald, “Hole mobility enhancements in nanometer-scale strained-Silicon heterostructures grown on Ge-rich relaxed Si1-xGex,” J. Appl. Phys. 94, pp. 2590-2596, 2003.
[1.7] K. Rim, J. Chu, H. Chen, KA Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and HS Wong, “Characteristics and device and design of sub-100nm strained Si N- and PMOSFETs,” VLSI symp., pp. 98-99, 2002.
[1.8] N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, S. Kimura, “Performance enhancement of strained-Si MOSFETs fabricated on a chemical-mechanical-polished SiGe substrate,” IEEE Trans. Electron Dev. vol. 49, 12, pp. 2237-2243, 2002.
[1.9] S. Eguchi, J. L. Hoyt, C. W. Leitz and E. A. Fitzgerald, “Comparison of arsenic and phosphorus diffusion behavior in silicon–germanium alloys “ Appl. Phys. Lett. 80, pp. 1743, 2002.
[1.10]J. G. Fiorenza, G. Braithwaite, C. Leitz, M. T. Currie, Z. Y. Cheng, V. K. Yang, T. Langdo, J. Carlin, M. Somerville, A. Lochtefeld, H. Badawi, M. T. Bulsara, “Investigation of misfit dislocation leakage in supercritical strained silicon MOSFETs ,“ IRPS, pp. 493, 2004.
[2.1] R. People, “Physical and applications of GexSi1-x/Si strained-layer heterostructures, ” IEEE Journal of Quantum Electronics, vol. QE-22, NO. 9, pp.1696, 1986.
[2.2] J. H. van der Merwe, “Crystal interface. Part II. Finite Overgrowths,” Journal of Applied Physics, vol. 34, pp. 123, 1963.
[2.3] Y. H. Xie, “SiGe field effect transistors,” Materials Science and Engineering, vol. 25, pp. 89, 1999.
[2.4] M. P. Temple, D. J. Paul, Y. T. Tang, and A. M. Waite, “Compressively-strained, buried-channel Si0.7Ge0.3 p-MOSFETs fabricated on SiGe virtual substrates using a 0.25μm CMOS process,” IEEE Electron Dev. Lett., 2004
[2.5] R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic Optical Absorption in Germanium-Silicon Alloys,” Phys. Rev. 109, pp. 695, 1958
[2.6] D. V. Lang, R. People, J. C. Bean, and A. M. Sergent, “Measurement of the band gap of GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, pp. 1333, 1985
[2.7] D. K. Nayak and S. K. Chun, “Low-field hole mobility of strained Si on (100) Si1–xGex substrate,” Appl. Phys. Lett. 64, pp. 2514, 1994
[2.8] R. People, J. C. Bean, D. V. Lang, A. M. Sergent, and H. L. Stormer ,K. W. Wecht, R. T. Lynch, and K. Baldwin, “Modulation doping in GexSi1-x/Si strained layer heterostructures,” Appl. Phys. Lett. 45, pp. 1231, 1984
[2.9] M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates,” Phys. Rev. B 48, pp. 14276, 1993
[2.10] S. Subbanna, G. Freeman, D. Ahlgren, D. Greenberg, D. Harame, J. Dunn, D. Herman, B. Meyerson, Y. Greshishchev, P. Schvan, D. Thornberry, D. Sakamoto, and R. Tayrani, ”Integration and Design Issues in Combining Very-High-Speed Silicon-Germanium Bipolar Transistors and ULSI CMOS for System-on-a-Chip Applications,” IEDM Tech. Dig., pp. 845, 1999
[2.11] T. E. Whall and E. H. C. Parker, “SiGe—Heterostructures for CMOS technology,”
Thin Solid Films 367, pp. 250, 2000
[2.12] G.Hock, T. Hackbarth, U. Erben, E. Kohn, and U. Konig, “High performance 0.25 贡m p-type Ge/SiGe MODFET’s,” Electron. Lett. 34, pp. 1888, 1998
[2.13] G. Abstreiter, H. Bragger, T. Wolf, H. Jorke, and H. J. Herzog, “Strain-Induced Two-Dimensional Electron Gas in Selectively Doped Si/SixGe1-x Superlattices,” Phys. Rev. Lett. 54, pp. 2441, 1985
[2.14] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, “Strain dependence of the performance enhancement in strained-Si n-MOSFETs,” IEDM Tech. Dig., pp. 373 , 1994
[2.15] K. Ismail, S. F. Nelson, J. O. Chu, and B. S. Meyerson, “Electron transport properties of Si/SiGe heterostructures: Measurements and device implications,” Appl. Phys. Lett. 63, pp. 660, 1993
[2.16] N. Sugii, K. Nakagawa, Y. Kimura, S. Yamaguchi, and M. Miyao, “High Electron Mobility in Strained Si Channel of Si1-xGex/Si/Si1-xGex Heterostructure with Abrupt Interface,” Semicond. Sci. Technol. 13, pp. A140, 1998
[2.17] J. Weiser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors,” IEEE Electron Dev. Lett. 15, pp. 100, 1994
[2.18] D. K. Nayak, J. C. S. Woo, J. S. Park, K. L. Wang, and K. P. MacWilliams, “High-mobility p-channel metal-oxide-semiconductor field-effect transistor on strained Si,” Appl. Phys. Lett. 62, 2853, 1993
[2.19] T. Yamada, J.-R. Zhou, H. Miyata, and D. K. Ferry, “In-plane transport properties of Si/Si1-xGex structure and its FET performance by computer simulation,” IEEE Trans. Electron Dev. 41, 1513 (1994).
[2.20] F. M. Bufler and B. Meinerzhagen, “Hydrodynamic transport parameters for holes in strained silicon,” Proceedings of the Sixth International IEEE Workshop on Computational Electronics, pp. 242, 1998
[2.21] K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s,” IEEE Trans. Electron Dev. 47, pp. 1406, 2000
[3.1] S. Takagi, T. Mizuno, T. Tezuka, N. Sugiyama, T. Numata, K. Usuda, Y. Moriyama, S. Nakaharai, and M. Koga, “Channel structure design, fabrication and carrier transport properties of strained-Si/SiGe-On-Insulator (Strained-SOI) MOSFET,” in IEDM Tech. Dig., pp. 57-60, 2003.
[3.2] S. L. Wu, Y. P. Wang, and Shoou Jinn Chang, “Controlled misfit dislocation technology in strained silicon MOSFETs,” Semicond. Sci. Technol., vol 21, pp. 44-47, 2006.
[3.3] K. Sawano, S. Koh, and Y. Shiraki, Y. Hirose and T. Hattori, K. Nakagawa, “Mobility enhancement in strained Si modulation-doped structures by chemical mechanical polishing,” Appl. Phys. Lett., vol. 82, No. 3, pp. 412-414, 2003.
[3.4] B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett. 48, pp. 797, 1986.
[3.5] F. W. Smith and G. Ghidini, “Reaction of Oxygen with Si(111) and (100):Critical Conditions for the Growth of SiO2,” J. Electrochem. Soc. 129, pp. 1300, 1982.
[3.6] G. Ghidini and F. W. Smith, “Interaction of H2O with Si [111] and Si [100]. Critical conditions for the growth of SiO2,” J. Electrochem. Soc. 131, pp. 2924, 1984.
[3.7] P. M. Mooney, “Strain relaxation and dislocations in Si/iSiGe structure,” Mater. Sci.
[3.8] Louch T, Chen C S, Yang L W, Shih H H, Chen K C, Hsueh C, Chung H, Pan S and Lu C Y, “Stress release for shallow trench isolation by single-wafer, rapid-thermal steam oxidation,” International Conference on Advanced Thermal Processing of Semiconductors, pp. 111, 2002.
[3.9] Fiorenza J G, Braithwaite G, Leitz C, Currie M T, Cheng Z Y, Yang V K, Langdo T, Carlin J, Somerville M, Lochtefeld A, Badawi H, Bulsara M T, “Investigation of misfit dislocation leakage in supercritical strained silicon MOSFETs,” International Reliability Physics Symp., pp. 493, 2004
[3.10] J. Lutze, T. Miranda, G. Scott, C. Olsen, N. Variam, and S. Mehta, “Optimization of implant anneals to improve transistor performance in a 0.15 μm CMOS technology,” IEEE Electron Dev. Lett., vol. 21, pp. 451 (2000).
[3.11] F. Schäffler, “High-mobility Si and Ge structures,” Semicond. Sci. Technol, vol. 12, pp.1515-1549, 1997.
[4.1] R. Loo, R. Delhougne, M. Caymax, and M. Ries, “Formation of misfit dislocations at the thin strained Si/strain-relaxed buffer interface,” Appl .Phys. Lett., vol.87, no. 18, pp. 182108, Oct. 2005
[4.2] M. Somerville, “Hyperspectral imaging of breakdown in InAlAs/InGaAs HEMTs: a comparative study,” in Device Research Conference Confeence Digest, pp, 65 – 66, 2001.
[5.1] N. Lukyanchikova, N. Garbar, M. Petrichuk, E. Simoen and C. Claeys, “Flicker noise in deep submicron nMOS transistors, ” Solid State Electron., vol. 4, no. 7, p. 1239, 2000.
[5.2] N. Giordano, “Defect motion and low-frequency noise in disordered metals,” Solid State Sci., vol. 3, no. 1, p. 27, 1989.
[5.3] E. Simoen and C. Claeys, in Noise and Fluctuations Control in Electronic Devices, A. Balandin, Editor, Chap. 8, American Scientific Publishers, Stevenson Ranch, CA 2002
[5.4] K. H. Lundberg, “Noise sources in bulk CMOS,” 2002.
[5.5] A. L. McWhorter, “1/f noise and germanium surface properties,” In R. H. Kingston editor, Semiconductor surface physics, Philadelphia: University of Philadephia Press, p.207, 1957.
[5.6] W.-C. Hua, M. H. Lee, P. S. Chen, S. Maikap, and C. W. Liu, ”Threading dislocation induced low frequency noise in strained-Si nMOSFETs”, IEEE Electron Device Lett., vol. 25, pp. 667-669, 2005.
[5.7] E. Simoen, G. Eneman, P. Verheyen, R. Delhougne, R. Loo, K. De Meyer, and C. Claeys, “On the beneficial impact of tensile-strained silicon substrates on the low-frequency noise of n-channel metal-oxide-semiconductor transistors”, Appl. Phys. Lett., vol. 86, 2005
[5.8] F. N. Hooge, “1/f noise is no surface effect,” Physics Letters, 29A(3), p.139, April 1969.
[5.9] K. K. Hung, P. K. Ko, C. Hu, Y. C. Cheng. “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistor,” IEEE Trans. Electron Devices, vol. 37, pp. 654-665, 1990.