| 研究生: |
陳志嘉 Chen, Chih-Chia |
|---|---|
| 論文名稱: |
四旋翼動態建模和非線性逆步式位置控制器設計 Dynamic Modeling and Nonlinear Backstepping Positioning Controller Design for a Quadrotor |
| 指導教授: |
彭兆仲
Peng, Chao-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 四旋翼 、無人機控制 、強健控制 、位置控制 、積分逆步控制 、虛擬控制 、軌跡跟踪 |
| 外文關鍵詞: | quadrotor control, positional control, integral backstepping control, virtual control, trajectory tracking |
| 相關次數: | 點閱:218 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
四旋翼在航拍攝影、探勘、科學研究和救援任務等多種應用場景中扮演著重要的角色。然而由於四旋翼系統的非線性以及外部干擾和量測雜訊的存在,實現高度精確的位置控制仍然面臨著一定的挑戰。在四旋翼位置控制中,需要依賴姿態角的變化來間接實現位置軌跡追蹤的目標。然而一些現有文獻在串聯控制器設計中忽略了姿態暫態的重要影響,這導致位置追蹤性能不如預期。事實上姿態追蹤響應的暫態行為不能被忽視,因此需要同時考慮姿態迴路的閉迴路穩定性和位置追蹤。本研究提出了一種積分逆步控制器的位置和姿態控制回路的綜合控制設計。該控制器的實現依賴於虛擬控制輸入的導數。先前的研究通常使用數值微分方法來近似計算虛擬控制法則的導數。然而在實際應用中,數值微分可能會在存在量測雜訊的情況下導致控制信號的顫震(chattering)現象。這種顫震行為將會對致動器造成損害,或使系統響應發散。為了解決這個問題,本論文推導出虛擬控制導數的解析形式。將虛擬控制導數分解為無關干擾的可補償項和與干擾耦合的不可補償項。通過利用可補償項,可以顯著減少由於對量測雜訊進行微分而引起的控制信號抖動。模擬結果表明,所提出的控制算法在位置追蹤性能方面優於傳統的雙迴路控制器。同時應用提出的控制器可以獲得較平滑的控制信號。本論文以模擬來說明四旋翼控制中的位置追蹤問題,並驗證了所提出的綜合控制器的有效性與強健性。
Prior research tends to overlook the significant transient behavior of attitude tracking in the position controller design for quadrotor systems, resulting in suboptimal position tracking performance. To tackle this issue, this study proposes a flight controller design that integrates position and attitude dynamics using an integral backstepping control approach. Traditional methods approximate the derivatives of virtual control laws using numerical differentiation, leading to control signal chattering in the presence of measurement noise, potentially causing damage to actuators and system response divergence. To mitigate this problem, the study derives an analytic form for the derivative of the virtual control law, separating it into disturbance-independent compensable and disturbance-dependent non-compensable components. By utilizing the compensable term, control chattering caused by noise differentiation is significantly reduced. Simulation results demonstrate the superiority of the proposed control algorithm over the conventional dual-loop scheme in terms of position tracking performance while ensuring relatively smooth control signals for practical implementation. These simulations effectively illustrate the effectiveness of the proposed compromised control scheme in addressing the position tracking challenges encountered by quadrotor systems.
[1]O. I. D. Bashi, W. Hasan, N. Azis, S. Shafie, and H. Wagatsuma, “Unmanned aerial vehicle quadcopter: A review,” Journal of Computational and Theoretical Nanoscience, vol. 14, no. 12, pp. 5663–5675, 2017.
[2]R. Penicka and D. Scaramuzza, “Minimum-time quadrotor waypoint flight in cluttered environments,”IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5719–5726, 2022.
[3]B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-aware trajectory replanning for quadrotor fast flight,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.
[4]C.-C. Peng and W. Cheng-Yu, “Design of constrained dynamic path planning algorithms in large-scale 3d point cloud maps for uavs,” Journal of Computational Science, p. 101944, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877750323000042
[5]H. Yañez-Badillo, F. Beltran-Carbajal, R. Tapia-Olvera, A. Favela-Contreras, C. Sotelo, and D. Sotelo, “Adaptive robust motion control of quadrotor systems using artificial neural networks and particle swarm optimization,” Mathematics, vol. 9, no. 19, p. 2367, 2021.
[6]J. Betancourt, P. Castillo, P. Garcı́a, V. Balaguer, and R. Lozano, “Robust bounded control scheme for quadrotor vehicles under high dynamic disturbances,” 2022.
[7]T. Madani and A. Benallegue, “Backstepping control for a quadrotor helicopter,” in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 3255–3260.
[8]W. Jasim and D. Gu, “Integral backstepping controller for quadrotor path tracking,” in 2015 International Conference on Advanced Robotics (ICAR), 2015, pp. 593–598.
[9]L. Zhou, J. Zhang, H. She, and H. Jin, “Quadrotor uav flight control via a novel saturation integral back-stepping controller,” Automatika, vol. 60, no. 2, pp. 193–206, 2019.
[10]M. Labbadi and M. Cherkaoui, “Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor uav,” Aerospace Science and Technology, vol. 93, p. 105306, 2019. [Online].Available: https://www.sciencedirect.com/science/article/pii/S1270963819300318
[11]N. Koksal, H. An, and B. Fidan, “Backstepping-based adaptive control of a quadrotor uav with guaranteed tracking performance,” ISA Transactions, vol. 105, pp. 98–110, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0019057820302524
[12]N. Xuan-Mung and S. K. Hong, “Robust backstepping trajectory tracking control of a quadrotor with input saturation via extended state observer,” Applied Sciences, vol. 9, no. 23, 2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/23/5184
[13]A. Govea-Vargas, R. Castro-Linares, M. A. Duarte-Mermoud, N. Aguila-Camacho, and G. E. Ceballos- Benavides, “Fractional order sliding mode control of a class of second order perturbed nonlinear systems: Application to the trajectory tracking of a quadrotor,” Algorithms, vol. 11, no. 11, 2018. [Online].Available: https://www.mdpi.com/1999-4893/11/11/168
[14]Y. Niu, H. Ban, H. Zhang, W. Gong, and F. Yu, “Nonsingular terminal sliding mode based finite-time dynamic surface control for a quadrotor uav,” Algorithms, vol. 14, no. 11, 2021. [Online]. Available: https://www.mdpi.com/1999-4893/14/11/315
[15]J. Zhao, X. Wang, G. Gao, J. Na, H. Liu, and F. Luan, “Online adaptive parameter estimation for quadrotors,” Algorithms, vol. 11, no. 11, 2018. [Online]. Available: https://www.mdpi.com/1999-4893/ 11/11/167
[16]J. Liu, W. Gai, J. Zhang, and Y. Li, “Nonlinear adaptive backstepping with eso for the quadrotor trajectory tracking control in the multiple disturbances,” International Journal of Control, Automation and Systems, vol. 17, no. 11, pp. 2754–2768, 2019.
[17]A. Chovancová, T. Fico, Ľuboš Chovanec, and P. Hubinsk, “Mathematical modelling and parameter identification of quadrotor (a survey),” Procedia Engineering, vol. 96, pp. 172–181, 2014, modelling of Mechanical and Mechatronic Systems. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S1877705814031981
[18]P. Ventura Diaz and S. Yoon, “High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles,” in 2018 AIAA Aerospace Sciences Meeting, 2018, p. 1266.
[19]J. Moreno-Valenzuela, R. Pérez-Alcocer, M. Guerrero-Medina, and A. Dzul, “Nonlinear pid-type controller for quadrotor trajectory tracking,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 5, pp. 2436–2447, 2018.
[20]Z. Jia, J. Yu, Y. Mei, Y. Chen, Y. Shen, and X. Ai, “Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances,” Aerospace Science and Technology, vol. 68, pp. 299– 307, 2017.
[21]H. Ríos, R. Falcón, O. A. González, and A. Dzul, “Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1264–1272, 2019.
[22]Z. Zhang, F. Wang, Y. Guo, and C. Hua, “Multivariable sliding mode backstepping controller design for quadrotor uav based on disturbance observer,” Science China Information Sciences, vol. 61, no. 11, pp. 1–16, 2018.
[23]Y. Nettari, M. Labbadi, and S. Kurt, “Adaptive robust finite-time tracking control for quadrotor subject to disturbances,” Advances in Space Research, 2022.
[24]F. Goodarzi, D. Lee, and T. Lee, “Geometric nonlinear pid control of a quadrotor uav on se(3),” in 2013 European Control Conference (ECC), 2013, pp. 3845–3850.
[25]M. Demirhan and C. Premachandra, “Development of an automated camera-based drone landing system,”IEEE Access, vol. 8, pp. 202 111–202 121, 2020.
[26]M. Piponidis, P. Aristodemou, and T. Theocharides, “Towards a fully autonomous uav controller for moving platform detection and landing,” in 2022 35th International Conference on VLSI Design and 2022 21st International Conference on Embedded Systems (VLSID), 2022, pp. 180–185.
[27]C.-C. Peng, Y. Li, and C.-L. Chen, “A robust integral type backstepping controller design for control of uncertain nonlinear systems subject to disturbance,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 5, 2011.
[28]I. Meslouli, M. Kahouadji, A. Choukchou-Braham, C. Bensalah, M. R. Mokhtari, and B. Cherki, “Ex- perimental validation of quaternion based integral backstepping design for attitude tracking,” in 2018 6th International Conference on Control Engineering & Information Technology (CEIT), 2018, pp. 1–6.
[29]Y.-R. Li and C.-C. Peng, “Encoder position feedback based indirect integral method for motor parameter identification subject to asymmetric friction,” vol. 152, p. 104386.
[30]C.-C. Peng and T.-Y. Chen, “A recursive low-pass filtering method for a commercial cooling fan tray parameter online estimation with measurement noise,” vol. 205, p. 112193.
[31]S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 153–158.
[32]Y. Zhang, Z. Chen, X. Zhang, Q. Sun, and M. Sun, “A novel control scheme for quadrotor uav based upon active disturbance rejection control,” Aerospace Science and Technology, vol. 79, pp. 601–609, 2018.
[33]C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments,” in Robotics research. Springer, 2016, pp. 649–666.
[34]M. Cutler and J. How, “Actuator constrained trajectory generation and control for variable-pitch quadrotors,” 08 2012.
[35]D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 2520–2525.
校內:2028-08-07公開