研究生: |
許廣元 Hsu, Kuang-Yuan |
---|---|
論文名稱: |
薄膜電感最佳材料結構之研究 Optimization of Material Microstructure Study for Thin-Film Inductors |
指導教授: |
劉全璞
Liu, Chuan-Pu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 銅薄膜 、濺鍍 、薄膜電感 |
外文關鍵詞: | Sputter, Thin-film inductor, Co thin film |
相關次數: | 點閱:85 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們首先探討濺鍍的製程參數濺鍍距離、工作壓力與基板負偏壓對銅與鈷薄膜微結構的影響。進一步利用性質較佳之低電阻的銅與鈷薄膜應用於平面電感的導線,探討導線電阻對平面電感的電感值與品質因子的影
響,並探討不同的介電層材料對平面電感品質因子的影響。
實驗結果顯示銅薄膜於濺鍍距離近、低工作壓力與高基板偏壓之鍍膜條件下,濺鍍銅粒子具有高能量入射於基板表面後,銅薄膜會藉由應變能的釋放發生再結晶與晶粒成長。銅薄膜的結構會由以低表面能(111)優選方位轉變為具有低應變能(200)優選方位。而(200)優選方位再結晶的發生會使得銅薄膜晶粒成長、具有低的缺陷密度與低的電阻率。其次,在濺鍍工作壓力3mTorr、濺鍍距離7cm 條件下可沈積出具有低溫穩定ε 相的鈷薄膜。而鈷薄膜的結晶方位會經由基板負偏壓的增加由(002)轉變為(100),並具有較佳的電阻值。
當利用具有較低電阻的銅薄膜於螺旋平面電感導線時,可經由減少集膚效應與接近效應產生的渦電流,而降低電感的串聯電阻值減少能量損失,使得電感具有較高的品質因子與電感值。而利用具有低介電常數的材料作為平面電感
的介電層時,可經由減少因高頻操作時造成的介電層的極化損失,使得電感的品質因子有明顯的改善。然而,雖然鈷薄膜具有非常高的導磁率,但其電阻值也非常的高。因此當利用鈷薄膜應用於平面電感的導線時,只會在很小的頻率範圍展現電感的性質,且具有非常低的品質因子。
Abstract
In this study, we first discuss the evolution of Cu and Co thin film microstructure as function of sputter parameters, including substrate-to-target (DT-Sub) distance, working pressure and negative substrate bias. Subsequently, the Cu and Co thin films with best quality and low resistivity are applied as the spiral conductor in spiral thin film inductor.The inductance and quality factor of inductor properties are discussed in terms of Cu and Co resistivity. Furthermore, we discuss the effect on inductor quality factor from different dielectric materials, including organosilicate glass, florinated silicon glass, silicon dioxide and polyimide.
Experimental results reveal that recrystallization and grain growth proceed with high energetic Cu adatom bombardment on substrates through strain energy relaxation by reducing DT-Sub, low working pressure and high negative substrate bias. The crystal structure of the Cu thin film will change from (111) preferred orientation with low surface energy to (200) preferred orientation with low strain energy. The preferred (200) orientation via recrystallization results in large grains, low defect density and low resistivity. On the other hand, Co thin film with low-temperature stable ε phase can be obtained by sputtering at working pressure of 3 mTorr and DT-Sub of 7cm. The crystal orientation of the Co thin film will change from (002) to (100) with increasing negative substrate bias and hence better resistivity.
The use of the lower resistive Cu thin film as the metal line in the spiral thin film inductors can reduce series resistance, which induces small eddy current from skin- effect and proximity-effect, and hence increases quality factor significantly and slightly improves inductance for thin film inductors. Furthermore, quality factor of thin film inductor can be largely enhanced by using low-dielectric-constant dielectrics due to the reduction of dielectric polarization losses. Although, the inductor consisting of Co thin film with large permeability but high resistivity, which revelers the inductor only applicable for very small frequency range with poor quality factor.
1.T. M. Hyltin, “Microstrip transmission in semiconductor dielectrics,” IEEE Trans. Microwave Tech., vol. MTT-13, no. 6, pp. 777-781, Nov. 1965.
2.J. D. Welch, and H. J. Pratt, “Losses in microstrip transmission systems for integrated microwave circuits,” in NEREM Record, 1966, pp. 100-101.
3.L. Young and H. Sobol, Eds., Advances in Microwave. New York: Academic, 1974, pp. 19-32.
4.M. W. Geen, G. J. Green, R. G. Arnold, J. A. Jenkins, and R. H. Jansen, “Miniature multilayer spiral inductors for GaAs MMICs,” in GaAs IC Symp., 1989, pp. 303-306.
5.N. M. Neguyen and R. G. Meyer, “Si IC-compatible inductors and lc passive filters,” IEEE J. Solid-State Circuit, vol. 25, no. 4, pp. 1028-1031, Aug. 1990.
6.N. M. Neguyen and R. G. Meyer, “A Si bipolar monolithic RF bandpass amplifier,” IEEE J. Solid-State Circuits, vol. 27, no. 1, pp. 123-127, Jan. 1992.
7.N. M. Neguyen and R. G. Meyer, “A 1.8-GHz monolithic LC voltage- controlled oscillator,” IEEE J. Solid-State Circuits, vol. 27, no. 3, pp. 444-450, Mar. 1992.
8.J. Y.-C. Chang, A. A. Abidi, and M.Gaitan, “Large suspended inductors on silicon and their use in CMOS RF amplifier,” IEEE Trans. Electron Device Lett, vol. 14, no. 5, May 1993.
9.R. C. Frye, K. L. Tai, M. Y. Lau, and A. W. C. Lin, “Lost-cost silicon-on-silicon MCM’s with Integrated passive components,” Proc. IEPS Conf. Austin, TX, Sept. 27-30, 1992.
10.H. Jiang, Y. J. La, Y. Wang, and N. Tien, “Electromagnetically shielded high-Q CMOS-compatible copper inductors,” in IEEE Int. Solid-State Circuit Tech. Dig., 2000, pp. 330-331.
11.K. Kamogawa, K. Nishikawa, I. Toyoda, T. Tokumitsu, and M. Tanaka, “A novel high-Q and wide-frequency-range inductor using Si 3-D MMIC technology,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 16-18, Jan. 1999.
12.C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE J. Solid-State Circuit, vol. 33, pp. 743-752, May 1998.
13.J.-B. Yoon, C.-H. Han, E. Yoon, and C.-K. Kim, “Monolithic high-Q overhang inductors fabricated on silicon and glass substrates,” in IEDM Tech. Dig., 1999, pp. 753-756.
14.J. N. Burghartz, D. C. Edelstein, K. A. Jenkins, C. Jahnes, C. Uzoh, E. J. O’Sullivan, K. K. Chan, M. Soyuer, P. Roper, and S. Cordes, “Monolithic spiral inductors fabricated using a VLSI Cu-Damascene interconnect technology and low-loss substrates,” in IEDM Tech. Dig., Dec. 1996, pp. 99–102.
15.J. N. Burghartz, D. C. Edelstein, K. A. Jenkins, and Y. H. Kwark, “Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1961–1968, Oct. 1997.
16.D. C. Edelstein and J. N. Burghartz, “Spiral and solenoidal inductor structures on silicon using Cu-damascene interconnects,” in Proc. IEEE Int. Interconnect Technology Conf., 2001, pp. 18–20.
17.C. C. Lin, H. M. Hsu, Y. H. Chen, T. Shih, S. M. Jang, C. H. Yu, and M. S. Liang, “A full Cu damascene metallization process for sub-0.18 μm RF CMOS SoC high Q inductor and MIM capacitor application at 2.4 GHz and 5.3 GHz,” in Proc. IEEE Int. Interconnect Technology Conf., 2001, pp. 113–115.
18.B. Arbuckle, E. Logan, D. Pedder, Solid State Tech. 84, Nov. (2000).
19.G. Roos, Elec. Eng. Times, 17, 81, Jan. (2000).
20.P. Mannion, Electronic Design 47, 109, (1999).
21.S. Whelan, RF Product Forum, 66, Aug. (2000).
22.許華偉,國立清華大學材料科學與工程學系,博士論文”碳化鈦及氮化鈦薄膜在Si(100)基板之磊晶成長” (1998)。
23.王起明,國立清華大學材料科學與工程學系,博士論文”氮化鈦薄膜濺鍍之研究” (1996)。
24.I. Milosev, H. H. Strehblow & B. Navinsel, Thin Solid Films, 303, 246 (1997).
25.S. Horita, T. Tujikwa, H. Akahori, M. Kobayashi & T. Harta, J. Vac. Sci. Technol., A11(5), 2452 (1993).
26.J. A. Thornton, Annu. Rev. Mater. Sci. 7, 239 (1997).
27.K. H. Min, K. C. Chun, and K. B. Kim, J. Vac. Sci. Technol. B 14, 3263 (1996).
28.S. K. Rha et al., Thin Solid Films 320, 134 (1998).
29.D. B. Knorr, D. P. Tracy, Material Chemistry and Physics 41 (1995) 206.
30.L. K. Nash, “Elements of Classical and Statistical Thermodynamics”, Addison-Wesley, Reading Mass. (1970).
31.H.J. Leamy, G.H. Gilmer and K.A. Jackson, “Statistical Thermodynamics of Clean Surfaces”, in Surface Physics of Materials, ed. by J.M. Blakely, Academic Press, New York (1975) Chap. 3.
32.M. Prutton, “Surface Physics”, Clarendon Press, Oxford (1975).
33.J. E. Sanchez, E. Arzt, Scr. Metall. Mater., 27 (1992) 285.
34.C. V. Thompson, Scr. Metall. Mater., 28 (1993) 167.
35.F. Blatt, physics of Electronic Conduction in Solids (McGraw-Hill, New York, 1968).
36.Handbook of Electrical Resistivities of Binary Metallic Alloys (CRC Press, Cleveland, 1983).
37.C. Lingk and M. E. Gross, J. Appl. Phys. 84, 5547 (1998); C. Lingk et al., Proc. Adv. Metall. Conf., Colorado Springs (1998).
38.C. Cabral, Jr., et al., Proc. Adv. Metall. Conf. 14, 81 (1999).
39.L. M. Gignac, K. P. Rodbell, C. Cabral, Jr., P. C. Andricacos, P. S. Locke, S. J. Klepeies, R. B. Beyers, and P. M. Rice, Mater. Res. Soc. Symp. Proc.
40.W. D. Nix, Metall. Trans. A 20 (1989) 2217.
41.J. Zhang, K Xu, J. HE, J. Mat. Sci. Lett., 18 (1999) 471-473.
42.Joachim N. Burghartz, D. C. Edelstein, Mehmet Soyuer, H. A. Ainspan, A. Jenkins, IEEE JOURNAL OF SOLID-STATE CIRCUIT, VOL. 33, NO. 12, DECEMBER 1998.
43.J. E. Post, IEEE TRANSACTION ON CIRCUITS AND SYSTEMS-Ⅱ: ANALOG AND DIGITAL PROCESSING, VOL.47, NO.1, JANUARY 2000.
44.D. Pukneva, G. Dodeva, M. Hristov, A. Roussel, IEEE ELECTRON DEVICE LETTERS, VOL. 23, NO. 9, SEPTEMBER 2002.
45.F.W. Grover, Inductance Calculations. New York, NY: Van Nostrand, 1962.
46.H. M. Greenhouse, IEEE Transaction on parts, Hybrids, and Packaging, Vol. PHP-10, No.2, June 1974.
47.R. A. Pucel, D. J. Massé, and C. P. Hartwig, “Losses in microstrip,” IEEE Trans. Microwave Theory Tech., vol. 16, pp. 342–350, June 1968.
48.R. Faraji-Dana and Y. L. Chow, “The current distribution and ac resistance of a microstrip structure,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1268–1277, Sept. 1990.
49.Y. Eo and W. R. Eisenstadt, “High-speed VLSI interconnect modeling based on S-parameter measurements,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 16, pp. 555–562, Aug. 1993.
50.Ryan L. Bunch, David I. Sanderson, Sanjay Raman, 82 IEEE Microwave Magazine, June 2002.
51.Xiao Huo, Kevin J. Chen, Philip C. H., IEEE Electron Device Letters, vol. 23, no. 9, September 2002
52.Snezana Jenei, Stefaan Decoutere, Stefaan Van Huylenbroeck, Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers. 2001 Topical Meeting on , 12-14 Sept. 2001 pp. 64-67.
53.C. Patrick Yue, Changsup Ryu, Jack Lau, Thomas H. Lee, S. Simon Wong, Electron Devices Meeting, 1996., International , 8-11 Dec. 1996 pp. 155 – 158.
54.C. P. Yue and S. S. Wong, “On-Chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, vol. 33, pp. 743-752, May 1998.
55.Johnny H. HE, Guo Lihui, and Joseph Xie. “Fabrication and Simulation of Copper Spiral On-chip Inductors for RF Wireless Communication.” The 3rd IEEE International Conference of Microwave and Millimeter wave Technology, Beijing, P.R. China. (2002).
56.Ferenc Mernyei, Franz Darrer, Matthijs Pardoen, Andreas Sibrai, IEEE Microwave and Guided Wave Letters, vol. 8, no. 9, September 1998.
57.R. W. Vook, F. Witt, J. Appl. Phys. 36, 2169 (1965).
58.Andrew F. Burnett, Jay M. Cech, J. Vac. Sci. Techno. A 11(6), Nov/Dec (1993).
59.R. D. Bland, G. J. Kominiak, D. M. Mattox, J. Vac. Sci. Technol., vol. 11, no. 4, July/Aug. (1974).
60.F. Witt, R. W. Vook, J. Appl. Phys. 39, 2773 (1968).