簡易檢索 / 詳目顯示

研究生: 鄒博成
Tzou, Bo-Cheng
論文名稱: 探討重金屬鎘誘發星狀膠細胞氧化傷害及鞣花酸抑制鎘導致的氧化傷害之機轉
Studies on cadmium-induced astrocytic oxidative injury and antioxidative effect of ellagic acid on cadmium-treated astrocytes
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 72
中文關鍵詞: 星狀膠質細胞小膠質細胞氧化壓力神經細胞
外文關鍵詞: astrocyte, microglia, neuron, oxidative stress, cadmium
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著全球工業化發展,越來越多的重金屬鎘被排放到環境中。最近許多研究指出長期暴露在高濃度鎘環境將產生神經毒性,並且可能與許多慢性中樞神經疾病有所關連。星狀膠質細胞為中樞神經系統中主要的膠質細胞,在神經細胞的成熟、滋養神經細胞、微環境中離子的平衡,以及神經傳導物質的清除等扮演主要的角色。本實驗以20 μM氯化鎘處理初級星狀膠質細胞24小時後,細胞形態萎縮且細胞活性顯著下降。進一步觀察胞內鈣離子濃度,發現處理30 μM氯化鎘後,胞內鈣離子濃度顯著增加,推測鎘離子可能干擾鈣離子平衡,使胞內鈣離子濃度快速增加而導致細胞死亡。接著使用胞內與包外鈣離子螯合劑預先處理細胞能顯著降低鎘所造成之細胞死亡。我們亦觀察細胞經過鎘處理後,胞內活性氧化族群有增加的趨勢,粒腺體膜功能亦受到影響。再同時處理天然抗氧化物鞣花酸之後,能有效降低胞內氧化壓力以及細胞死亡。此外亦發現鎘會干擾胞內超氧化歧異脢之活性,且持續表現鋅銅超氧化歧異脢能降低鎘所造成之胞死亡。綜合上述,我們推測鎘可能藉由引起胞內鈣離子過量增加、降低超氧化歧異脢活性,使得粒腺體功能受損並增加胞內氧化壓力,最後造成細胞死亡。

      Cadmium (Cd), a heavy metal generally used in modern industry, has been reported to induce neurotoxicity, and Cd-inudced injury is thought to be associated with CNS neurodegenerative disorders. Astrocytes a major CNS glia, play a supportive role in neuronal maturation, neuroprotection and neurotransmission. In this study, we found that treatment of astrocytes with CdCl2 at the concentrations greater than 20 μM for 24 h resulted in the dystrophy of astrocytes. Examination of intracellular calcium levels [Ca2+]i indicated that treatment of CdCl2 at 30 μM rapidly induced an increase in [Ca2+]i, suggesting that Cd-induced astrocytic death may be resulted from the disturbance of homeostasis of [Ca2+]i via rapidly Ca2+ influx. Indeed, pretreatment of EGTA and BAPTA prevented astrocytic cell death from Cd insult. We also found that the level of free radicals in astrocytes were increased following Cd treatment. Moreover, pretreatment with 30 µM of antioxidant ellagic acid and overexpression of Zn,Cu-SOD inhibited Cd-induced astrocytic cell death. We demonstrate here that Cd induces astrocytes toward programmed cell death, which may be due to the overload of [Ca2+]i, interruption of SOD and increase of oxidative stress, then subsequently triggering mitochondrial dysfunction. Our study suggests that Cd promotes neuronal cell death via inducing astrocytic cell death.

    目錄.............................1 ABBREVIATIONS.............................3 前言.............................4   環境中的元素鎘.............................4   鎘的累積所造成的影響.............................6   鎘造成細胞死亡(cell death)之機制.............................7   中樞神經系統中星狀膠質細胞之功能.............................7   小膠質細胞對中樞神經系統的影響.............................9   鞣花酸(ellagic acid)之介紹.............................10 研究目的.............................11 材料與方法.............................13   材料.............................13     細胞培養材料.............................13     化學藥品.............................14     試劑組.............................14     抗體.............................16   方法.............................16     細胞培養.............................16     初級星狀膠質細胞(primary astrocytes)之培養.............................16     初級小質細胞(primary microglia)之培養.............................17     老鼠大腦皮層神經細胞(primary brain cortical neuron)之培養.............................18     蛋白質粹取與西方點墨法.............................19     細胞全部蛋白質萃取.............................19     粒腺體蛋白質萃取.............................19     蛋白質定量分析.............................20     西方點墨法.............................20     細胞活性 (cell viability)分析--使用MTT assay.............................21     細胞毒性 (cytotoxicity)分析—使用LDH assay.............................22     細胞免疫螢光染色 (immunocytochemistry).............................22     鈣離子造影 (calcium imaging)分析.............................23     以流式細胞儀分析細胞凋亡程度 (flow cytometry for apoptosis detection).............................24     活性氧化族群之量測 (Measurement of ROS).............................24     Caspase-3蛋白活性測試.............................25     超氧化歧異脢活性測試 (SOD enzyme activity assay).............................25     腺病毒載體轉染 (Adenovector transfection).............................26     於細胞存活實驗中各種抑制劑之使用方式 (effect of inhibitors for cell survival).............................27     分析軟體 27     資料統計與分析 (Statistical analysis).............................28 實驗結果.............................29   一. 鎘對初級星狀膠質細胞型態的改變及毒性傷害.............................29   二. 比較不同初級細胞間對氯化鎘的耐受程度差異.............................31   三. 氯化鎘造成初級星狀膠質細胞死亡之機制.............................31       鎘造成細胞死亡為caspase-3非依賴性.............................31       鎘造成初級星狀膠質細胞粒腺體膜電位損害及cytrochrome c釋放.............................32   四. 鎘造成初級星狀膠質細胞死亡與活性氧化族群(ROS)生成的關係.............................33       鎘顯著增加初級星狀膠質細胞ROS之產量.............................33       持續表現抗氧化脢能降低鎘誘導之細胞死亡.............................33   五. 鞣花酸(Ellagic acid; EA)對抗鎘所造成之氧化壓力之關係.............................34       EA回復鎘所造成之細胞死亡.............................34       EA顯著降低鎘所導致的ROS產量.............................34       EA維持SOD活性不受鎘的影響.............................35   六. 鎘對初級星狀膠質細胞之胞內鈣離子運動及細胞死亡之關係.............................35 討論 37   鎘造成初級星狀膠質細胞死亡.............................37   中樞神經系統細胞對鎘耐受度之差異之探討.............................38   鎘主要造成星狀膠質細胞內ROS產生使細胞受損.............................38   CdCl2使初級星狀膠質細胞內鈣離子增加.............................39 未來研究方向.............................40 參考文獻 41 圖目錄 圖一、不同濃度的CdCl2處理星狀膠質細胞24小時後之細胞型態變化 47 圖二、不同濃度的CdCl2對於星狀膠質細胞6到12小時後對於細胞存活率之影響 48 圖三、不同濃度的CdCl2處理星狀膠質細胞24小時後對於細胞存活率之影響 49 圖四、星狀膠質細胞以低濃度CdCl2 長時間後其細胞存活情況 50 圖五、不同濃度的CdCl2處理星狀膠質細胞24小時後對於細胞毒性之影響 51 圖六、不同濃度的CdCl2處理初級神經細胞24小時後對於細胞活性之影響 52 圖七、不同濃度的CdCl2處理初級小膠質細胞24小時後對於細胞活性之影響 53 圖八、本實驗中氯化鎘對不同初級細胞造成影響之濃度 (LC50: 達到50%細胞死亡之濃度) 54 圖九、星狀膠質細胞處理30 μM CdCl2 18小時後對於細胞凋亡之影響 55 圖十、星狀膠質細胞處理20 μM CdCl2經過4小時後其切裁過caspase-3之分佈 56 圖十一、星狀膠質細胞處理不同濃度CdCl2 經過2小時後其切裁過caspase-3之表現 57 圖十二、星狀膠質細胞處理不同濃度CdCl2 兩個小時後其caspase-3活化之情況 58 圖十三、星狀膠質細胞前處理Caspase-3抑制劑再處理CdCl2 一天後其細胞存活情況 59 圖十四、星狀膠質細胞經處理CdCl2 過4小時後其粒腺體膜電位之情形 60 圖十五、星狀膠質細胞處理CdCl2 後胞內活性氧化族群產生程度 61 圖十六、星狀膠質細胞轉染多種抗氧化脢後處理CdCl2 後細胞存活程度 62 圖十七、鞣花酸 (ellagic acid, EA)化學結構式 63 圖十八、星狀膠質細胞共同處理抗氧化物EA與CdCl2後細胞存活程度 64 圖十九、星狀膠質細胞共同處理抗氧化物EA與CdCl2 後活性氧化族群產量降低 65 圖二十、星狀膠質細胞共同處理抗氧化物EA與CdCl2 後SOD活性的改變 66 圖二十一、星狀膠質細胞處理CdCl2 後胞內鈣離子濃度變化情況 67 圖二十二、星狀膠質細胞共同處理EGTA與CdCl2後存活率的改變 68 圖二十三、星狀膠質細胞共同處理EGTA與CdCl2 後其活性氧化族群產量的變化 69 圖二十四、星狀膠質細胞前處理處理BAPTA再處理CdCl2 後存活率的改變 70 圖二十五、鎘對初級星狀膠質細胞造成影響的可能路徑 71 圖二十六、細胞內氧化壓力 (oxidative stress) 代謝路徑 72

    Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41-53.
    Abshire MK, Buzard GS, Shiraishi N, Waalkes MP (1996) Induction of c-myc and c-jun proto-oncogene expression in rat L6 myoblasts by cadmium is inhibited by zinc preinduction of the metallothionein gene. J Toxicol Environ Health 48:359-377.
    Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397-1421.
    Ahmed S, Rahman A, Saleem M, Athar M, Sultana S (1999) Ellagic acid ameliorates nickel induced biochemical alterations: diminution of oxidative stress. Hum Exp Toxicol 18:691-698.
    Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000) Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem 75:1219-1233.
    Bonifati DM, Kishore U (2006) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol.
    Bush AI (2003) The metallobiology of Alzheimer's disease. Trends Neurosci 26:207-214.
    Dorai T, Aggarwal BB (2004) Role of chemopreventive agents in cancer therapy. Cancer Lett 215:129-140.
    Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274:23996-24006.
    Gerhardsson L, Englyst V, Lundstrom NG, Sandberg S, Nordberg G (2002) Cadmium, copper and zinc in tissues of deceased copper smelter workers. J Trace Elem Med Biol 16:261-266.
    Gorman AM, McGowan A, O'Neill C, Cotter T (1996) Oxidative stress and apoptosis in neurodegeneration. J Neurol Sci 139 Suppl:45-52.
    Gottschalg E, Moore NE, Ryan AK, Travis LC, Waller RC, Pratt S, Atmaca M, Kind CN, Fry JR (2006) Phenotypic anchoring of arsenic and cadmium toxicity in three hepatic-related cell systems reveals compound- and cell-specific selective up-regulation of stress protein expression: Implications for fingerprint profiling of cytotoxicity. Chem Biol Interact.
    Hamada T, Tanimoto A, Sasaguri Y (1997) Apoptosis induced by cadmium. Apoptosis 2:359-367.
    Hannum SM (2004) Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr 44:1-17.
    Huang YH, Shih CM, Huang CJ, Lin CM, Chou CM, Tsai ML, Liu TP, Chiu JF, Chen CT (2006) Effects of cadmium on structure and enzymatic activity of Cu,Zn-SOD and oxidative status in neural cells. J Cell Biochem 98:577-589.
    Jenner P (2003) Oxidative stress in Parkinson's disease. Ann Neurol 53 Suppl 3:S26-36; discussion S36-28.
    Jeong EM, Moon CH, Kim CS, Lee SH, Baik EJ, Moon CK, Jung YS (2004) Cadmium stimulates the expression of ICAM-1 via NF-kappaB activation in cerebrovascular endothelial cells. Biochem Biophys Res Commun 320:887-892.
    Jin T, Lu J, Nordberg M (1998) Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology 19:529-535.
    Kalia K, Flora SJ (2005) Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47:1-21.
    Kang EH, Kown TY, Oh GT, Park WF, Park SI, Park SK, Lee YI (2006) The flavonoid ellagic acid from a medicinal herb inhibits host immune tolerance induced by the hepatitis B virus-e antigen. Antiviral Res.
    Kim DO, Lee CY (2004) Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr 44:253-273.
    Kim J, Sharma RP (2006) Cadmium-induced Apoptosis in Murine Macrophages is Antagonized by Antioxidants and Caspase Inhibitors. J Toxicol Environ Health A 69:1181-1201.
    Kjellstrom T, Nordberg GF (1978) A kinetic model of cadmium metabolism in the human being. Environ Res 16:248-269.
    Koehler RC, Gebremedhin D, Harder DR (2006) Role of astrocytes in cerebrovascular regulation. J Appl Physiol 100:307-317.
    Kumar R, Agarwal AK, Seth PK (1996) Oxidative stress-mediated neurotoxicity of cadmium. Toxicol Lett 89:65-69.
    Lafuente A, Esquifino AI (1999) Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male. Toxicol Lett 110:209-218.
    Lee WK, Abouhamed M, Thevenod F (2006) Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells. Am J Physiol Renal Physiol.
    Lehmann GL, Gradilone SA, Marinelli RA (2004) Aquaporin water channels in central nervous system. Curr Neurovasc Res 1:293-303.
    Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385-392.
    Long GJ (1997a) Cadmium perturbs calcium homeostasis in rat osteosarcoma (ROS 17/2.8) cells; a possible role for protein kinase C. Toxicol Lett 91:91-97.
    Long GJ (1997b) The effect of cadmium on cytosolic free calcium, protein kinase C, and collagen synthesis in rat osteosarcoma (ROS 17/2.8) cells. Toxicol Appl Pharmacol 143:189-195.
    Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940-951.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63.
    Nath R, Prasad R, Palinal VK, Chopra RK (1984) Molecular basis of cadmium toxicity. Prog Food Nutr Sci 8:109-163.
    Pathak N, Khandelwal S (2006) Influence of cadmium on murine thymocytes: Potentiation of apoptosis and oxidative stress. Toxicol Lett.
    Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515-520.
    Sancho P, Fernandez C, Yuste VJ, Amran D, Ramos AM, de Blas E, Susin SA, Aller P (2006) Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress. Apoptosis.
    Schiffer RB, McDermott MP, Copley C (2001) A multiple sclerosis cluster associated with a small, north-central Illinois community. Arch Environ Health 56:389-395.
    Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194-206.
    Shukla GS, Singhal RL (1984) The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese. Can J Physiol Pharmacol 62:1015-1031.
    Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83-106.
    Soliman KF, Mazzio EA (1998) In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc Soc Exp Biol Med 218:390-397.
    Szuster-Ciesielska A, Stachura A, Slotwinska M, Kaminska T, Sniezko R, Paduch R, Abramczyk D, Filar J, Kandefer-Szerszen M (2000) The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145:159-171.
    Tjalve H, Henriksson J (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20:181-195.
    Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta.
    Walz W, Wilson DC (1986) Calcium entry into cultured mouse astrocytes. Neurosci Lett 67:301-306.
    Ward JP, Snetkov VA, Aaronson PI (2004) Calcium, mitochondria and oxygen sensing in the pulmonary circulation. Cell Calcium 36:209-220.
    Watjen W, Beyersmann D (2004) Cadmium-induced apoptosis in C6 glioma cells: influence of oxidative stress. Biometals 17:65-78.
    Waypa GB, Schumacker PT (2006) Role for mitochondrial reactive oxygen species in hypoxic pulmonary vasoconstriction. Novartis Found Symp 272:176-192; discussion 192-175, 214-177.
    Wood AW, Huang MT, Chang RL, Newmark HL, Lehr RE, Yagi H, Sayer JM, Jerina DM, Conney AH (1982) Inhibition of the mutagenicity of bay-region diol epoxides of polycyclic aromatic hydrocarbons by naturally occurring plant phenols: exceptional activity of ellagic acid. Proc Natl Acad Sci U S A 79:5513-5517.
    Wu JP, Chen HC (2004) Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere 57:1591-1598.
    Zheng W (1996) Choroid plexus and metal toxicity. Boca Raton: CRC Press.
    Zheng W, Aschner M, Ghersi-Egea JF (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 192:1-11.
    Zielasek J, Hartung HP (1996) Molecular mechanisms of microglial activation. Adv Neuroimmunol 6:191-122.

    下載圖示 校內:2008-07-17公開
    校外:2008-07-17公開
    QR CODE