簡易檢索 / 詳目顯示

研究生: 顏劭安
Yan, Shao-an
論文名稱: Ba1-xMxTi1-xZrxO3 (M=Ca、Sr)複合型鈣鈦礦之介電性質研究
The Dielectric Properties of Complex Perovskite Oxide of Ba1-xMxTi1-xZrxO3 (M=Ca、Sr)
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 101
中文關鍵詞: 鈦酸鋇介電材料弛緩性質
外文關鍵詞: relaxor properties, BaTiO3, dielectric properties
相關次數: 點閱:88下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討鈣鈦礦BaTiO3中添加MZrO3(M=Ca、Sr)後,對其介電性質的影響。本實驗主要由兩大部份組成,(1)以固態反應法製備Ba1-XCaXTi1-XZrXO3與Ba1-XSrXTi1-XZrXO3之結構及介電性質研究;(2)以溶膠-凝膠法製備Ba1-XCaXTi1-XZrXO3與Ba1-XSrXTi1-XZrXO3之結構及介電性質研究。
    本實驗成功以兩階段固態反應法合成Ba1-XCaXTi1-XZrXO3與Ba1-XSrXTi1-XZrXO3之複合型陶瓷系統。在固態反應法合成的各系列中,Ba1-XCaXTi1-XZrXO3系列在x=0.1時,於78℃下有最大介電常數值約為15000,同時介電損失約為0.03。藉由鐵電磁滯曲線的量測可發現,各系列在添加量x大於0.05後出現明顯的鐵電性質。並由介電特性可發現鐵電弛緩現象。在BCTZ與BSTZ系統中,介電常數出現的峰值溫度均隨添加量提高而下降,峰值形狀亦隨添加量增加而漸漸寬化,而介電常數隨頻率減少而增加,在低頻範圍具有較多的方向極化及空間電荷極化。在Cole-Cole plot 測量中,可發現BCTZ與BSTZ具有晶界能障型電容形式。
    在以溶膠-凝膠法製備Ba1-XCaXTi1-XZrXO3與Ba1-XSrXTi1-XZrXO3之複合型陶瓷系統研究中,發現其成相溫度可以控製在比固態反應法低的範圍,而在BSTZ系列中,最大介電常數出現在X=0.3時,出現溫度在39℃,其值約為32000,同時介電損失約在1.2左右。在此製程中,BCTZ與BSTZ的介電行為表現均有與固態反應法相似之處,介電常數和介電損失亦會隨著頻率增加而有所下降。鐵電磁滯曲線在x=0.05後便相繼出現,並隨著添加量提高而更加明顯。

    This research focused on the effects of different dopants to their dielectric properties of the perovskite BaTiO3 powders doped with MZrO3(M=Ca、Sr). The study consists of two main parts:(1) The structure and dielectric properties of the Ba1-XCaXTi1-XZrXO3 and Ba1-XSrXTi1-XZrXO3 systems synthesized by solid state reaction. (2) The structure and dielectric properties of the Ba1-XCaXTi1-XZrXO3 and Ba1-XSrXTi1-XZrXO3 systems synthesized by sol-gel method.
    In this research, the complex perovskite ferroelectric ceramics, Ba1-XCaXTi1-XZrXO3 and Ba1-XSrXTi1-XZrXO3 were fabricated by two stages solid-state reaction. Among these systems, Ba1-XCaXTi1-XZrXO3 with x=0.1 had the highest dielectric constant ~15000 at 78℃ with the dielectric loss of 0.03, which was measured at 1kHz. By the measurement of ferroelectric hysteresis loop, the conclusion is that all the systems have the ferroelectric properties when the dopants concentrate x more than 0.05. And the ferroelectric relaxer properties were found.
    The Ba1-XCaXTi1-XZrXO3 and Ba1-XSrXTi1-XZrXO3 has been successfully synthesized by sol-gel method . In this research, we found that the crystallization temperature of sol-gel method is lower than solid state reaction, and the dielectric constant and dielectric loss also higher than solid state reaction. The highest dielectric constant is about 32000, and dielectric loss is about 1.2, it occur to the Ba1-XSrXTi1-XZrXO3 when the x is 0.3, at 39℃.

    目 錄 第一章 緒論 1 1-1. 前言 1 1-2. 鈦酸鋇介電材料 2 1-3. 研究動機 3 1-4. 研究目的 3 第二章 基礎理論 6 2-1. 鈣鈦礦結構與其穩定性 6 2-2. 介電理論 7 2-2-1 介電常數 7 2-2-2 極化機構 8 2-2-3 介電損失 9 2-2-4 鈦酸鋇晶粒大小對介電性質影響 10 2-3. 複合型鈣鈦礦結構特性 11 2-3-1 有序-無序排列 11 2-3-2 弛緩性質 12 2-4. 鐵電理論 13 2-4-1 鐵電性質 13 2-4-2 鐵電磁滯曲線 14 2-5. 阻抗分析原理 14 第三章 實驗內容與方法 28 3-1. 實驗方法 28 3-2. 實驗藥品 28 3-2-1 固態反應法使用藥品 28 3-2-2 溶膠-凝膠製程使用藥品 28 3-3. 固態反應法 29 3-4. 溶膠-凝膠製程 29 3-5. 結構與成份分析 30 3-5-1 X光繞射分析 30 3-5-2 密度量測 30 3-5-3 SEM顯微結構之分析 31 3-6. 性質量測 31 3-6-1 介電性質(Dielectric Properties)測量 31 3-6-2 阻抗分析量測 32 3-6-3 P-E曲線測量 32 第四章 結果與討論 35 4-1. 固態反應法合成Ba1-XCaXTi1-XZrXO3及其介電性質研究 35 4-1-1. Ba1-XCaXTi1-XZrXO3粉末及塊材之X光繞射分析 35 4-1-2. SEM表面微結構分析 36 4-1-3. BCTZ介電性質分析 36 4-1-4. BCTZ阻抗分析量測 38 4-1-5. BCTZ電滯曲線量測 39 4-1-6. 結論 39 4-2. 以固態反應法合成Ba1-XSrXTi1-XZrXO3 52 4-2-1. Ba1-XSrXTi1-XZrXO3粉末之X光繞射分析 52 4-2-2. SEM表面微結構分析 52 4-2-3. BSTZ介電性質分析 53 4-2-4. BSTZ阻抗分析量測 55 4-2-5. BSTZ電滯曲線量測 55 4-2-6. 結論 55 4-3. 以溶膠-凝膠法合成Ba1-XCaXTi1-XZrXO3 67 4-3-1. Ba1-XCaXTi1-XZrXO3粉末及塊材之X光繞射分析 67 4-3-2. SEM表面微結構分析 67 4-3-3. BCTZ介電性質分析 68 4-3-4. BCTZ阻抗分析量測 70 4-3-5. BCTZ電滯曲線量測 71 4-3-6. 結論 71 4-4. 以溶膠-凝膠法合成Ba1-XSrXTi1-XZrXO3 81 4-4-1. Ba1-XSrXTi1-XZrXO3 X光繞射分析 81 4-4-2. SEM表面微結構分析 81 4-4-3. BSTZ介電性質分析 81 4-4-4. BSTZ阻抗分析量測 83 4-4-5. BSTZ電滯曲線量測 83 4-4-6. 結論 84 第五章 總結論 94 參考文獻 95 圖 目 錄 Fig. 1-1.(a)The crystal structure of BaTiO3(b)The variation of crystal structure and the direction of BaTiO3 spontaneous polarization 5 Fig.2-1 Schematic of perovskite structure 19 Fig. 2-2. Schematic diagram of a single electric dipole and the polarization vector in a dielectric 19 Fig. 2-3. The moment of the forces acting upon a dipole in an electric field 20 Fig. 2-4. (a) Four kinds of polarization mechanisms (b) Frequency dependence of the different contributions to the polarization 21 Fig. 2-5. The relationship between polarization and time (a) dipole (b) polarization process 22 Fig. 2-6. The phase difference of current and voltage in circuits 22 Fig. 2-7. The relationship between grain size and dielectric constant[9] 23 Fig. 2-9. Strong dielectric material compared with relaxor dielectric material 24 Fig. 2-10. The random arrangement of relaxor ferroelectric 24 Fig. 2-11. The microstructure of A(B1B2)O3 25 Fig. 2-12. The typical hysteresis loop (polarization to electric field) of ferroelectric phase material 25 Fig. 2-13. The Cole-Cole plot of (a) Single resistor R (b) Single capacitor C (c) A series combination of an ideal capacitor C and resistor R (d) A parallel combination of an ideal capacitor C and resistor R 26 Fig. 2-14. The Cole-Cole plot of two parallel R-C circuits in series 27 Fig. 2-15. The Cole-Cole plot of a resistor in series with parallel R-C 27 Fig. 3-1. Illustration the preparation procedure of the Ba1-XMXTi1-XZrXO3 powders by sold state reaction 33 Fig. 3-2. Illustration the preparation procedure of the Ba1-XMXTi1-XZrXO3 powders by sol-gel method 34 Fig.4-1. X-ray diffraction patterns for compositions x = 0.1 of the system Ba0.9Ca0.1Ti0.9Zr0.1O3 calcined at (a) 900℃ ( b ) 1000℃ (c) 1100℃ for 10h 42 Fig.4-2. X-ray diffraction patterns for compositions x = (a) 0.01 (b) 0.03 (c) 0.05 (d) 0.08 (e) 0.1 (f) 0.2 and (g) 0.3 of the system Ba1-XCaXTi1-XZrXO3 sintered at 14000℃ for 2h 43 Fig.4-3. Scanning electron micrographs of surfaces with different samples of (a) 1300℃ X= 0.1, (b) 1400℃ X= 0.1, (c) 1300℃ X= 0.2, (d) 1400℃ X= 0.2, in the system of Ba1-XCaXTi1-XZrXO3 44 Fig.4-4. Scanning electron micrographs of surfaces with X (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.08, (e) 0.1, (f) 0.2, (g) 0.3, in the system Ba1-XCaXTi1-XZrXO3 sintered at 1400℃ for 2 h. 45 Fig.4-6. Variation of dielectric constant with different doping concentration at (a)0.01-0.08 (b)0.1-0.3 for the samples sintered at 1400℃ for 2h.(at 1kHz) 47 Fig.4-7. Variation of dielectric loss with different doping concentration (a) X= 0.01- 0.08 (b) X= 0.1 to 0.3 for the samples sintered at 1400℃ for 2h. (at 1kHz) 48 Fig.4-8. Variation of (a) r and (b) D at different temperatures and at 1k, 10k, 100k and 500kHz for Ba0.9Ca0.1Ti0.9Zr0.1O3 sintered at 1400℃ 49 Fig.4-9. Cole-Cole impedance plots for Ba0.9Ca0.1Ti0.9Zr0.1O3 (sintered at 1400 ℃) at the different temperatures of (a) 0℃ (b) 40℃ (c) 90℃ 50 Fig. 4-10. P-E hysteresis loops of samples with X (a) 0.03, (b) 0.05, (c) 0.08, (d) 0.1, (e) 0.2 and (f) 0.3 in the Ba1-XCaXTi1-XZrXO3 system which sintered at 1400℃ for 2 hours. 51 Fig.4-11. X-ray diffraction patterns for compositions x = 0.1 of the system Ba0.9Sr0.1Ti0.9Zr0.1O3 calcined at (a) 900℃ ( b ) 1000℃ (c) 1100℃ for 10h 57 Fig.4-12. X-ray diffraction patterns for compositions x = (a) 0.01 (b) 0.03 (c) 0.05 (d) 0.08 (e) 0.1 (f) 0.2 and (g) 0.2 of the system Ba1-XSrXTi1-XZrXO3 sintered at 1400℃ for 2h 58 Fig.4-13. Scanning electron micrographs of surfaces with different samples of (a) 1300℃ X= 0.1, (b) 1400℃ X= 0.1, (c) 1300℃ X= 0.2, (d) 1400℃ X= 0.2, in the system of Ba1-XSrXTi1-XZrXO3 59 Fig.4-14. Scanning electron micrographs of surfaces with X (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.08, (e) 0.1, (f) 0.2, (g) 0.3, in the system Ba1-XSrXTi1-XZrXO3 sintered at 1400℃ for 2 h. 60 Fig.4-16. Variation of dielectric constant with different doping concentration at (a)0.01-0.08 (b)0.1-0.3 for the samples sintered at 1400℃ for 2h.(at 1kHz) 62 Fig.4-17. Variation of dielectric loss with different doping concentration (a) X= 0.01- 0.08 (b) X= 0.1 to 0.3 for the samples sintered at 1400℃ for 2h. (at 1kHz) 63 Fig.4-18. Variation of (a) r and (b) D at different temperatures and at 1k, 10k, 100k and 500kHz for Ba0.7Sr0.3Ti0.7Zr0.3O3 sintered at 1400℃ 64 Fig.4-19. Cole-Cole impedance plots for Ba0.7Sr0.3Ti0.7Zr0.3O3 (sintered at 1400 ℃) at the different temperatures of (a) 0℃ (b) 40℃ (c) 90℃. 65 Fig. 4-20. P-E hysteresis loops of samples with X (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.08, (e) 0.1 (f) 0.2 and (g)0.3in the Ba1-XSrXTi1-XZrXO3 system which sintered at 1400℃ for 2 hours. 66 Fig.4-21. X-ray diffraction patterns for compositions x = 0.1 of the system Ba0.9Ca0.1Ti0.9Zr0.1O3 calcined at (a) 800℃ ( b ) 900℃ (c) 1000℃ for 5h 72 Fig.4-22. X-ray diffraction patterns for compositions x = (a) 0.01 (b) 0.03 (c) 0.05 (d) 0.08 (e) 0.1 (f) 0.2 and (g) 0.2 of the system Ba1-XCaXTi1-XZrXO3 sintered at 1400℃ for 2h 73 Fig.4-23. Scanning electron micrographs of surfaces with X (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.08, (e) 0.1, (f) 0.2, (g) 0.3, in the system Ba1-XCaXTi1-XZrXO3 sintered at 1400℃ for 2 h. 74 Fig.4-25. Variation of dielectric constant with different doping concentration at (a)0.01-0.08 (b)0.1-0.3 for the samples sintered at 1400℃ for 2h.(at 1kHz) 76 Fig.4-26. Variation of dielectric loss with different doping concentration (a) X= 0.01- 0.08 (b) X= 0.1 to 0.3 for the samples sintered at 1400℃ for 2h. (at 1kHz) 77 Fig.4-27. Variation of (a) r and (b) D at different temperatures and at 1k, 10k, 100k and 500kHz for Ba0.9Sr0.1Ti0.9Zr0.1O3 sintered at 1400℃ 78 Fig.4-28 Cole-Cole impedance plots for Ba0.9Sr0.1Ti0.9Zr0.1O3 (sintered at 1400 ℃) at the different temperatures of (a) 0℃ (b) 40℃ (c) 90℃. 79 Fig. 4-29. P-E hysteresis loops of samples with X (a) 0.05, (b) 0.08, (c) 0.1, (d) 0.3, in the Ba1-XCaXTi1-XZrXO3 system which sintered at 1400℃ for 2 hours. 80 Fig.4-30. X-ray diffraction patterns for compositions x = 0.1 of the system Ba0.9Sr0.1Ti0.9Zr0.1O3 calcined at (a) 800℃ ( b ) 900℃ (c) 1000℃ for 5h 85 Fig.4-31. X-ray diffraction patterns for compositions x = (a) 0.01 (b) 0.03 (c) 0.05 (d) 0.08 (e) 0.1 (f) 0.2 and (g) 0.2 of the system Ba1-XSrXTi1-XZrXO3 sintered at 1400℃ for 2h 86 Fig.4-32. Scanning electron micrographs of surfaces with X (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.08, (e) 0.1, (f) 0.2, (g) 0.3, in the system Ba1-XSrXTi1-XZrXO3 sintered at 1400℃ for 2 h. 87 Fig 4-33. The relative densities of BSTZ ceramics sintered at 1400℃ for 2hr 88 Fig.4-34. Variation of dielectric constant with different doping concentration at (a)0.01-0.08 (b)0.1-0.3 for the samples sintered at 1400℃ for 2h.(at 1kHz) 89 Fig.4-35. Variation of dissipation factor(D) with different doping concentration (a) X= 0.01- 0.08 (b) X= 0.1 to 0.3 for the samples sintered at 1400℃ for 2h. 90 Fig.4-36. Variation of (a) r and (b) D at different temperatures and at 1k, 10k, 100k and 500kHz for Ba0.8Sr0.2Ti0.8Zr0.2O3 sintered at 1400℃ 91 Fig.4-37. Cole-Cole impedance plots for Ba0.8Sr0.2Ti0.8Zr0.2O3 (sintered at 1400 ℃) at the different temperatures of (a) 0℃ (b) 40℃ (c) 90℃ 92 Fig. 4-38. P-E hysteresis loops of samples with X (a) 0.05, (b) 0.08, (c) 0.1, (d) 0.2, (e) 0.3 in the Ba1-XSrXTi1-XZrXO3 system which sintered at 1400℃ for 2 hours. 93 表 目 錄 Table 4-1. The tolerance factors of Ba1-xMxTi1-xZrxO3 M (M= Ca、Sr) perovskite system 41 Table 4-2 .The resistivity of the Ba1-xCaxTi1-xZrxO3 system at the room temperature 41 Table 4-3 .The resistivity of the Ba1-XSrXTi1-XZrXO3 system at the room temperature 57 Table 4-4 .The resistivity of the Ba1-XCaXTi1-XZrXO3 system at the room temperature 72 Table 4-5 .The resistivity of the Ba1-XSrXTi1-XZrXO3 system at the room temperature 85 Table 5-2. The highest εr and D of each BSTZ with solid state reaction and sol-gel method 95

    [1] 林世欽,”陶瓷晶片電容性質介紹及在電源模組上之應用”,工業材料雜誌, 178期(2001) 93
    [2] 薛立人,”超高電容器的應用深遠弘廣”,工業材料雜誌,128期 (1997) 133
    [3] 黃瑞雄、顏溪成,”漫談電化學”,科學發展雜誌,359期 P.27
    [4] G..A. Smolenskii and V.A. Ispov, Dokl. Akad. Nauk SSSR 9,(1954) 653
    [5] 吳朗,”電子陶瓷 (介電陶瓷)”,全欣出版社 (1994) 19
    [6] D. A. G. Bruggeman, Ann. Phys. (Paris) 24, (1935) 636
    [7] W. R. Buessen, L.E. Cross, and A.K. Goswami, J. Am. Ceram. Soc. 49, (1966) 33
    [8] M. M. Silvan, L. F. Cobas, R. J. Mattin-Palma, M. H. Velez and J. M. Martinez.”BaTiO3 thin film obtained by sol-gel spin coating” ,Surface and Coatings Technology 118(2002) 151
    [9] M. H. Frey and D.A. Payne, ”Grain-size Effect on Structure and Phase Transformations Barium Titanate”, Phys. Rev .B.,54(1996)3158
    [10] B. Lee and J. Zhang, ”Preparation, structure evolution and dielectric properties of BaTiO3 thin films and powders by an aqueous sol-gel process”,Thin Solid Films 388 (2001) 107
    [11] M. T. Buscaglia, V. Buscaglia, M. Viniain, J.Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni and M. Nygren. “Ferroelectric ptoperties of dense nanocrystlline BaTiO3 ceramic”, Nanotechnol. , 15 (2004)1113
    [12] M. M. Silvan, L. F. Cobas, R. J. Mattin-Palma, M. H. Velez and J. M.
    Martinez. BaTiO3 thin film obtained by sol-gel spin coating, Surface and Coatings Technology 151-152 (2002)118
    [13] M. H. Frey and D. A. Payne, ”Grain-size Effect on Structure and Phase Transformations for Barium Titanate”, Phys. Rev. B., 54 (1996 )3158
    [14] Z. Yu, C. Ang, R. Guo and A.S. Bhalla, ”Ferroelectric relaxor behavior of Ba(Ti0.7Zr0.3)O3,Appl. Phys. Lett. 92 (2002)2655
    [15] G. Li, Y. Uesu and K. Kohn, ”Structure Characte- rization of the complex perovskites Ba1-xLaxTi1-x CrxO3”, J. Solid State Chem. , 164,(2002) 98-105
    [16] D. Li and M. A. Subramanian. Noval tunable ferroelectric compositions:Ba1-xLnxTi1-xMxO3(Ln=La,Sm,Gd,Dy. M=Al,Fe,Cr), Solid State Sci., 2 (2000) 507
    [17] D. F. K. Henning and H. Schreinemacher, ”Ca-acceptors in Dielectric Ceramic Sintered in Reducive Atmpspheres”, J. Euro. Ceram. Soc. , 15 (1995)795
    [18] F. D. Morrison, A. Coats, D. C. Sinclair and A. R.West , ”Charge
    Compensation Mechanisms in La-Doped BaTiO3”, J. Electroceramics, 6(2001)219-232
    [19] O. Parkash, K.D. Mandal and M. S. Sastry,”Synthesis, structure and electrical conduction behaviour of the Ca1-XLaXSn1-XCo1-XO3 system”, J. Alloy and Compounds 228 (1995) 177
    [20] R.C. Buchanan,”Ceramic Materials for Electronics”, Dekker, New York, 1991.chapter 1.
    [21] B, Jaffe, W.R. Cook, Jr., and H. Jaffe,” Piezoelectric Ceramics”, Academic Press. London, 1971.chapter 1-2.
    [22] O. Parkash, L. Pandey, M,K. Sharma and D. Kumar, J. Mater. Sci., 24 (1989) 4505.
    [23] H.S. Tewari, O. Parkash, V.B. Tare and D. Kumar, J. Mater. Sei., 25 (1990) 2181.
    [24] D. Kumar, Ch. D. Prasad and O. Parkash, Bull. Mater. Sci., 9(1987) 123.
    [25] V. Vashooka, L. Vasylechko, J. Zosel and U. Guth,” Synthesis, crystal structure, and transport properties of La1-XCaXCr0.5Ti0.5O3-δ,” Solid States Ionics 159 (2003) 279
    [26] R.T. Baker, I.S. Metacalfe, Applied Catalysis, A 126(1995)297
    [27] J. Sfeir, J. van Herle, A.J. McEvoy, in: Ph. Stevens(Ed.),Proceedings of the Third European Solid Oxide Fuel Cells Forum, 2-5 June 1998, Nantes-France, (1998) 267.
    [28] P. Karen, T. Norby, Journal of the Electrochemical Society 145(1998) 264.
    [29] F. Donald Bloss, Crystallography and Crystal Chemistry, 253.
    [30] A. Chelkowski, “Dielectric Physics”, Silesian University Katowice, Poland (1979) 5
    [31] W. Y. Shih, W. H. Shih, I. A. Aksay ,” Size dependence of the ferroelectric transition of small BaTiO3 particles: Effect of depolarization”, Phys. Rev .B., 50 (1994)15575
    [32] M. Anliker, H. R. Brugger and W. Knzig, Helv. Phys. Acta 27, (1954) 99
    [33] W. Knzig, Ferroelectrics and Antiferroelectrics (Academic, New York, 1957), 58.
    [34] K. Ishikawa, K. Yoshikawa and N. Okada, Phys. Rev .B., 37 (1988) 5852
    [35] K. Saegusa, W. E. Rhine and H. K. Bowen, J. Am. Ceram. Soc. 76, (1993) 1505
    [36] W. H. Shih and Q. Lu, Ferroelectrics 154, (1994) 241
    [37] G. Arlt and P. Sasko ,“Domain Configuration and Equilibrium Size of Domain in BaTiO3 Ceramics ”, J. Appl. Phys. 51(9), (1980) 4956
    [38] N. Setter and L. E. Cross. “The contribution of structure disorder to diffuse transitions in ferroelectrics” , J. Mater. Sci., 15 (1980) 2478
    [39] P. Woodward, R. D. Hoffmann and A. W. Sleight,“Order-disorder in A2M3+M5+O6, J. Mater. Res., 9 (1994) 2118
    [40] F. Galasso and W. Darby, S. Phys. Chem. 66 (1962) 131
    [41] L.E. Cross, ”Relaxor Ferroelectric “, Ferroelectric,76(1987)241
    [42]V.A. Bokov and I.E. Mly, “Electric and Optical Properties of Single Crystal of Ferroelectric with a Diffuse Phase Transition” ,Sov. Phys. Solid State,3[3],(1961)613
    [43] D. Vladikova,“ The Technique of the Differential Impedance Analysis Part I : Basics of the Impedance Spectroscopy”, Adv. Tech. Energy Sources Invest. And Test. , 2-4 (2004) L8-1
    [44] 吳南均,”高等X光學 第二版 ”, 國立成功大學材料科學及工程學系,176-179
    [45] K. S. Cole and R. H. Cole,” Dispersion and Absorption in Dielectric“, J. Chem. Phys. 9 (1941) 341
    [55] A. K. Jonscher, “ Dielectric relaxation in Solids”, Chelsea Dielectrics Press Limited, London (1983) 76
    [56] V.G. Bhide, D.S. Rajoria, G. Rama Rao and C.N.R. Rao, Phys. Rev. B.6 (1972) 1021.
    [57] P. Raccah and J.B. Goodenough, Phys. Rev., 155 (1967) 932.
    [58] N. Yamaoka,”SrTiO3-Base Boundary Layer Capacitors”, J. Am. Ceram. Soc. Bull., 65 (1986) 1149
    [59]M. Yokosuka, “Dielectric Dispersion of the Complex Perovskite
    Oxide Ba(Fe1/2Nb1/2)O3 ar Low Ferquencies” ,Jpn. J. Appl. Phys.,
    34(1995)5338
    [60] J. Fleig and J. Maier,”Finite-Element Calculations on the Impedance of Electroceramics with Highly Resistive Grain Boundaries: l, Laterally Inhomogeneous Grain Boundaries”, J. Am. Ceram. Soc., 82 (1999) 3485
    [61] Zhi Yu, Chen Angle, Ruyan Guo, A.S. Bhalla, “Dielectric properties of Ba(Ti1-xZrx)O3 solid solutions” Materials Letters 61(2007)326-329
    [62] M. Mohsen, R. K. Rehberg, A. M. Massoud and H. T. Langhammer , ”Donor- doping effect in BaTiO3 ceramic using positron annihilation spectroscopy”, Radiation Phys.Chem. 68 (2003) 549
    [63] G. Arlt, D. Hennings, and G. de With“Dielectric properties of fine-grained barium titanate ceramics”, J. Appl. Phys., 58 (1985) 1619
    [64] E. A. Little, “ Dynamic Behavior of Domain Wall in Barium Titanate Ceramic”, Phy. Rev., 98 (1967) 978
    [65] R. K. Dwivedi, D. Kumar and O. Parlash, “Valence compensated perovskite oxide system Ca1-xLaxTi1-xCrxO3”, J. Mater. Sci., 36 (2001) 3649
    [66] R. Moos and K. H. Hrdtl, “Defect Chemistry of Donotr-Doped and Undoped Strontium Titanate Ceramics between 1000° and 1400℃”, J. Am. Ceram. Soc., 80 (1997) 2549
    [67] I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya and L. Jastrabik,“High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb)”, J. Appl. Phys., 93 (2003) 4130
    [68] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt and S. M. Shapiro, “Giant dielectric constant response in a copper-titanate”, Solid State Communications, 155 (2000) 217
    [69] P. Q. Mantas,“Dielectric Response of Materials Extension to the Debye Model”, J. Euro. Ceram. Soc., 19 (1999) 2079
    [70] F. D. Morrison, D. C. Sinclair and A. R. West, “Doping
    mechanisms and electrical properries of La-doped BaTiO3 ceramics, International J. of Inorganic Mater., 3 (2001) 1205

    下載圖示 校內:2017-07-27公開
    校外:2017-07-27公開
    QR CODE