| 研究生: |
劉知耘 Liu, Chih-Yun |
|---|---|
| 論文名稱: |
存活素小分子抑制劑YM155經由自噬作用促使乳癌細胞死亡 Targeting survivin by a novel small molecule inhibitor, YM155 induces autophagic cell death in human breast cancer cells |
| 指導教授: |
張雋曦
Cheung, Chun Hei Antonio |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 細胞自噬 、BIRC5 、DNA損傷 、存活素 |
| 外文關鍵詞: | Autophagy, BIRC5, DNA damage, survivin |
| 相關次數: | 點閱:151 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今對不同種類的乳癌治療方法有許多,包括有賀爾蒙療法、標靶治療或化學藥物治療等,但目前的治療方式仍有許多限制與副作用。因此急需開發另一種治療乳癌的新穎藥物。存活素(survivin)是抗凋亡蛋白家族之一員,且被證實在乳癌的進程中扮演很重要的角色。YM155為一種新穎的存活素小分子抑制劑。雖然已經有許多不同的YM155第二期臨床試驗正在進行,其中也包含在乳癌病患的研究,但對於陽性雌激素受體(ER)-他莫西芬(Tamoxifen)抗藥性之乳癌細胞中,YM155其藥效鮮少被探討,而且YM155在不同乳癌細胞亞型的不同抗癌作用仍舊未明。因此在本篇研究欲探討YM155對於不同種類乳癌的藥效並了解其分子機制。在本研究之細胞實驗中,YM155對於陽性雌激素受體-他莫西芬敏感性之MCF7乳癌細胞,及經由MCF7衍生出之陽性雌激素受體-抗他莫西芬抗藥性之乳癌細胞皆有療效,且在轉移性極強之三陰性(ER-, PR-, HER2-)乳癌細胞MDA-MB-231中也具有抑制生長的效果。過去文獻中普遍認為存活素透過半胱天東脢 (caspase-3)抑制細胞凋零(apoptosis),而在本篇研究中的西方墨點法、免疫螢光反應以及細胞自噬(autophagy)/細胞凋零抑制實驗中,在大多數測試的細胞(除了TamC3之外)都顯示YM155會增加自噬作用造成細胞死亡,並非透過半胱天東脢依賴性的細胞凋零。此外,在我們測試的細胞中發現到YM155會產生細胞自噬依賴性的DNA損傷。總結以上,本研究顯示在乳癌細胞中利用YM155針對存活素抑制,會增加細胞自噬作用而造成細胞死亡。因此,YM155有潛力及發展價值成為治療不同種類乳癌的抗癌物質。
Despite hormone therapy, targeted therapy and chemotherapy have been developed to target different types of breast cancer; the current breast cancer treatments still have several limitations and undesired side-effects. Thus, it is important to develop novel strategies to treat breast cancer. Survivin (BIRC5) is a member of the inhibitor-of-apoptosis proteins family, and it has been shown to play important role in breast cancer development and progression. YM155 is a novel small molecule inhibitor of survivin. Despite YM155 is currently undergoing different phase II clinical trials including studies in patients with breast cancer, its effectiveness in targeting the estrogen receptor (ER) positive Tamoxifen-resistant breast cancer was seldom determined in the past. In addition, it is still unclear whether YM155 exhibits differential anti-breast cancer functions in different breast cancer subtypes. The purpose of this study is to determine the effectiveness of YM155 in targeting various types of breast cancer and its differential molecular mechanism of action in different breast cancer cell lines. Here, YM155 is equally effective in targeting both the parental ER-positive Tamoxifen-sensitive MCF7 and the MCF7-dervided ER-positive Tamoxifen-resistant breast cancer cells in vitro. YM155 is also effective in targeting the triple-negative MDA-MB-231 breast cancer cells. Surprisingly, Western blot analysis, immunofluorescent microscopy and autophagy/apoptosis inhibition assay revealed that targeting survivin by YM155 induced autophagic cell death, but not caspase-3 dependent apoptosis, in most of the tested breast cancer cell lines; despite it is widely believed that survivin inhibits apoptosis through physical interactions with caspase-3. Interestingly, YM155 also induced autophagy-dependent DNA damage in the treated breast cancer cells. Taken together, targeting survivin by YM155 induces autophagic cell death in breast cancer cells. Importantly, YM155 is a promising anti-cancer compound that has potential for the management of various types of breast cancer.
Baehrecke, E. H. (2005). "Autophagy: dual roles in life and death?" Nat Rev Mol Cell Biol 6(6): 505-510.
Barth, A. S., Y. Zhang, et al. (2012). "Functional impairment of human resident cardiac stem cells by the cardiotoxic antineoplastic agent trastuzumab." Stem Cells Transl Med 1(4): 289-297.
Beug, S. T., H. H. Cheung, et al. (2012). "Modulation of immune signalling by inhibitors of apoptosis." Trends in Immunology 33(11): 535-545.
Bonner, W. M., C. E. Redon, et al. (2008). "GammaH2AX and cancer." Nat Rev Cancer 8(12): 957-967.
Cheson, B. D., N. L. Bartlett, et al. (2012). "A phase II study of the survivin suppressant YM155 in patients with refractory diffuse large B-cell lymphoma." Cancer 118(12): 3128-3134.
Cheung, C. H., H. H. Chen, et al. (2009). "Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers." Mol Cancer 8: 43.
Encarnacion, C. A., D. R. Ciocca, et al. (1993). "Measurement of steroid hormone receptors in breast cancer patients on tamoxifen." Breast Cancer Res Treat 26(3): 237-246.
Eskelinen, E. L. (2008). "New insights into the mechanisms of macroautophagy in mammalian cells." Int Rev Cell Mol Biol 266: 207-247.
Feng, W., A. Yoshida, et al. (2013). "YM155 induces caspase-8 dependent apoptosis through downregulation of survivin and Mcl-1 in human leukemia cells." Biochem Biophys Res Commun 435(1): 52-57.
Fischer, U., R. U. Janicke, et al. (2003). "Many cuts to ruin: a comprehensive update of caspase substrates." Cell Death Differ 10(1): 76-100.
Garcia-Calvo, M., E. P. Peterson, et al. (1998). "Inhibition of human caspases by peptide-based and macromolecular inhibitors." J Biol Chem 273(49): 32608-32613.
Glaros, T., L. Stockwin, et al. (2012). "The “survivin suppressants” NSC 80467 and YM155 induce a DNA damage response." Cancer Chemotherapy and Pharmacology 70(1): 207-212.
Guney, N., H. O. Soydine, et al. (2006). "Serum and urine survivin levels in breast cancer." Med Oncol 23(3): 335-339.
Hu, D., S. Liu, et al. (2010). "Cleavage of survivin by Granzyme M triggers degradation of the survivin-X-linked inhibitor of apoptosis protein (XIAP) complex to free caspase activity leading to cytolysis of target tumor cells." J Biol Chem 285(24): 18326-18335.
Ivashkevich, A., C. E. Redon, et al. (2012). "Use of the gamma-H2AX assay to monitor DNA damage and repair in translational cancer research." Cancer Lett 327(1-2): 123-133.
Iwasa, T., I. Okamoto, et al. (2010). "Marked anti-tumour activity of the combination of YM155, a novel survivin suppressant, and platinum-based drugs." British Journal of Cancer 103(1): 36-42.
Janicke, R. U. (2009). "MCF-7 breast carcinoma cells do not express caspase-3." Breast Cancer Res Treat 117(1): 219-221.
Janicke, R. U., M. L. Sprengart, et al. (1998). "Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis." J Biol Chem 273(16): 9357-9360.
Jeyaprakash, A. A., C. Basquin, et al. (2011). "Structural basis for the recognition of phosphorylated histone h3 by the survivin subunit of the chromosomal passenger complex." Structure 19(11): 1625-1634.
Kabeya, Y., N. Mizushima, et al. (2000). "LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing." EMBO J 19(21): 5720-5728.
Kang, K. B., C. Zhu, et al. (2009). "Enhanced sensitivity of celecoxib in human glioblastoma cells: Induction of DNA damage leading to p53-dependent G1 cell cycle arrest and autophagy." Mol Cancer 8: 66.
Katayama, M., T. Kawaguchi, et al. (2007). "DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells." Cell Death and Differentiation 14(3): 548-558.
Kato, J., Y. Kuwabara, et al. (2001). "Expression of survivin in esophageal cancer: correlation with the prognosis and response to chemotherapy." Int J Cancer 95(2): 92-95.
Kawasaki, H., M. Toyoda, et al. (2001). "Expression of survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis." Cancer 91(11): 2026-2032.
Kelly, A. E., C. Ghenoiu, et al. (2010). "Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B." Science 330(6001): 235-239.
Leung, E., J. E. Kim, et al. (2011). "Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells." Cancer Biol Ther 11(11): 938-946.
Levine, B., S. Sinha, et al. (2008). "Bcl-2 family members: dual regulators of apoptosis and autophagy." Autophagy 4(5): 600-606.
Lewis, K. D., W. Samlowski, et al. (2011). "A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma." Invest New Drugs 29(1): 161-166.
Li, X., X. Dang, et al. (2012). "Expression of survivin and VEGF-C in breast cancer tissue and its relation to lymphatic metastasis." Eur J Gynaecol Oncol 33(2): 178-182.
Liu, Z. H., C. H. Sun, et al. (2000). "Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain." Nature 408(6815): 1004-1008.
Lowry, O. H., N. J. Rosebrough, et al. (1951). "Protein measurement with the Folin phenol reagent." J Biol Chem 193(1): 265-275.
McComb, S., R. Mulligan, et al. (2010). "Caspase-3 Is Transiently Activated without Cell Death during Early Antigen Driven Expansion of CD8(+) T Cells In Vivo." Plos One 5(12).
Mizushima, N., B. Levine, et al. (2008). "Autophagy fights disease through cellular self-digestion." Nature 451(7182): 1069-1075.
Nakahara, T., A. Kita, et al. (2007). "YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts." Cancer Res 67(17): 8014-8021.
Nakahara, T., A. Kita, et al. (2011). "Broad spectrum and potent antitumor activities of YM155, a novel small-molecule survivin suppressant, in a wide variety of human cancer cell lines and xenograft models." Cancer Sci 102(3): 614-621.
Nakahara, T., M. Takeuchi, et al. (2007). "YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts." Cancer Res 67(17): 8014-8021.
Niemann, A., A. Takatsuki, et al. (2000). "The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe." J Histochem Cytochem 48(2): 251-258.
Ogata, M., S.-i. Hino, et al. (2006). "Autophagy is activated for cell survival after endoplasmic reticulum stress." Molecular and Cellular Biology 26(24): 9220-9231.
Osborne, C. K. (1998). "Tamoxifen in the treatment of breast cancer." N Engl J Med 339(22): 1609-1618.
Petrarca, C. R., A. T. Brunetto, et al. (2011). "Survivin as a predictive biomarker of complete pathologic response to neoadjuvant chemotherapy in patients with stage II and stage III breast cancer." Clin Breast Cancer 11(2): 129-134.
Pohlmann, P. R., I. A. Mayer, et al. (2009). "Resistance to Trastuzumab in Breast Cancer." Clin Cancer Res 15(24): 7479-7491.
Poole, B. and S. Ohkuma (1981). "Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages." J Cell Biol 90(3): 665-669.
Qiang, L., C. Wu, et al. (2013). "Autophagy controls p38 activation to promote cell survival under genotoxic stress." J Biol Chem 288(3): 1603-1611.
Ring, A. and M. Dowsett (2004). "Mechanisms of tamoxifen resistance." Endocr Relat Cancer 11(4): 643-658.
Roca, H., Z. Varsos, et al. (2008). "CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation." J Biol Chem 283(36): 25057-25073.
Ryan, B. M., G. E. Konecny, et al. (2006). "Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1." Ann Oncol 17(4): 597-604.
Sarela, A. I., R. C. A. Macadam, et al. (2000). "Expression of the antiapoptosis gene, Survivin, predicts death from recurrent colorectal carcinoma." Gut 46(5): 645-650.
Satoh, K., K. Kaneko, et al. (2001). "Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors." Cancer 92(2): 271-278.
Satoh, T., I. Okamoto, et al. (2009). "Phase I Study of YM155, a Novel Survivin Suppressant, in Patients with Advanced Solid Tumors." Clinical Cancer Research 15(11): 3872-3880.
Seidman, A., C. Hudis, et al. (2002). "Cardiac dysfunction in the trastuzumab clinical trials experience." J Clin Oncol 20(5): 1215-1221.
Shin, H. R., M. Boniol, et al. (2010). "Secular trends in breast cancer mortality in five East Asian populations: Hong Kong, Japan, Korea, Singapore and Taiwan." Cancer Sci 101(5): 1241-1246.
Shin, H. R., C. Joubert, et al. (2010). "Recent trends and patterns in breast cancer incidence among Eastern and Southeastern Asian women." Cancer Causes Control 21(11): 1777-1785.
Shin, S., B. J. Sung, et al. (2001). "An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7." Biochemistry 40(4): 1117-1123.
Slee, E. A., M. T. Harte, et al. (1999). "Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner." J Cell Biol 144(2): 281-292.
Speit, G. and A. Hartmann (2006). "The comet assay: a sensitive genotoxicity test for the detection of DNA damage and repair." Methods Mol Biol 314: 275-286.
Stennicke, H. R., J. M. Jurgensmeier, et al. (1998). "Pro-caspase-3 is a major physiologic target of caspase-8." J Biol Chem 273(42): 27084-27090.
Tao, Y. F., J. Lu, et al. (2012). "Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells." BMC Cancer 12: 619.
Tolcher, A. W., A. Mita, et al. (2008). "Phase I and Pharmacokinetic Study of YM155, a Small-Molecule Inhibitor of Survivin." Journal of Clinical Oncology 26(32): 5198-5203.
Tolcher, A. W., D. I. Quinn, et al. (2012). "A phase II study of YM155, a novel small-molecule suppressor of survivin, in castration-resistant taxane-pretreated prostate cancer." Ann Oncol 23(4): 968-973.
Walsh, J. G., S. P. Cullen, et al. (2008). "Executioner caspase-3 and caspase-7 are functionally distinct proteases." Proc Natl Acad Sci U S A 105(35): 12815-12819.
Wang, Q., Z. Chen, et al. (2011). "Induction of autophagy-dependent apoptosis by the survivin suppressant YM155 in prostate cancer cells." Cancer Lett 302(1): 29-36.
Wang, Q. W., Z. T. Chen, et al. (2011). "Induction of autophagy-dependent apoptosis by the survivin suppressant YM155 in prostate cancer cells." Cancer Letters 302(1): 29-36.
Yamashita, S., Y. Masuda, et al. (2007). "Survivin expression predicts early recurrence in early-stage breast cancer." Anticancer Res 27(4C): 2803-2808.