簡易檢索 / 詳目顯示

研究生: 張庭瑋
Chang, Ting-Wei
論文名稱: 輪緣螺帽冷鍛製程沖棒幾何設計最佳化之研究
Study on Geometric Design Optimization of Punch for Cold Forging of Flange Nut
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 輪緣螺帽有限元素分析田口方法疊料缺陷
外文關鍵詞: finite element analysis, Taguchi methods, flanged nut, folding defect
相關次數: 點閱:114下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 輪緣螺帽製程中,常常在成品內倒角處的位置發現有疊料的現象,不僅造成尺寸不符規範,也使得攻牙品質不佳,本文透過有限元素分析軟體DEFORM-3D來分析輪緣螺帽製程中胚料的流動情形以及與沖棒之間的接觸情形,發現在第四道次形成輪緣的過程,因胚料流動模式與沖棒之間的接觸形式,使得胚料在成形過程中,兩者之間產生空隙,而導致潤滑油容易流入該空隙而發生關油與疊料的缺陷。
      本文使用田口方法針對第四道次的沖棒外型幾何做最佳化設計,並使用影像處理中二值化的方法計算DEFORM模擬的成形過程中,胚料與沖棒之間空隙的截面積,再將此截面積作為品質特性。但是第四道次沖棒的幾何外型設計中有一項欲變動的參數為蕊頭斜邊角度,該參數會間接的影響到第五道次穿孔的品質,因此必須在決定因子水準之前,考慮第五道次穿孔製程的穿孔品質的情況下,針對蕊頭的斜邊角度做可行性評估。本文以DEFORM模擬穿孔製程,並導入Cockcroft and Latham的延性破懷準則,使用不同的臨界破壞值的模擬結果與實際結果比較,找出最符合實際結果的臨界破壞值後便完成穿孔製程模擬模型。隨後,即可用來評估第四道次之沖棒蕊頭斜邊角度可行性。
      本研究結果顯示使用胚料與沖棒之間空隙的截面積作為田口方法的品質特性的確能有效的達到解決關油及疊料的最佳化設計,並且透過ANOVA變異數分析後,得知沖棒蕊頭斜邊角度為影響程度最大的參數。最後,透過另外一個規格的輪緣螺帽,採用本文的方法亦獲得驗證。

    In cold forging of axisymmetric flanged nuts, folding is a common flow-induced defect. It not only caused the size of nut without meeting to the dimensions, but also reduces the quality of tapping process. In this study, the mechanisms of folding defect formation and avoidance in forging of axisymmetric flanged nut are systematically studied with FEM simulation. By simulating material flow behavior, the formation mechanism of folding defect can be revealed and it is highly related to the contact situation between the work material and the punch. In the other word, if the area between material and punch is smaller, the folding defect will less likely to form.
    In order to solve flow-induced defect, the geometric design of tool has been investigated. Taguchi method is used for designing an optimal geometric design of tool and obtaining the degree of influence of each parameter by ANOM(analysis of mean) and ANOVA(analysis of variance). At the end, the best combination of the tool geometric design is proposed. However, a parameter which affects the piercing process should be considered. Thus, before conducting Taguchi method conducting, the Cockcroft and Latham fracture criterion is used for predicting the quality of piercing to make sure that the parameter level is within boundary.
    Finally, through an industrial case, the optimal tool is designed and the proposed defect avoidance mechanism has been verified.

    摘要.................................... I ABSTRACT................................II 誌謝.................................... VIII 目錄....................................IX 表目錄..................................XII 圖目錄.................................. XIII 符號說明.................................XV 第一章 緒論................................ 1 1.1 研究動機............................... 1 1.2 研究目的............................... 1 1.3 研究流程............................... 2 1.4 全文架構............................... 4 第二章 文獻回顧............................. 5 2.1 有限元素分析與冷鍛製程缺陷............... 5 2.2 田口方法介紹............................ 7 2.2.1 損失函數............................. 7 2.2.2 信號雜訊比........................... 11 2.2.3 實驗設計法........................... 11 2.2.4 實驗分析............................. 12 第三章 輪緣螺帽製程與有限元素分析............ 16 3.1 輪緣螺帽製程........................... 16 3.2 有限元素法概述......................... 18 3.2.1 概述................................ 18 3.2.2 DEFORM軟體介紹....................... 19 3.3 模型建立............................... 25 3.3.1 幾何外型............................. 25 3.3.2 摩擦形式............................. 26 3.3.3 材料設定............................. 27 3.3.4 模擬控制............................. 28 3.4 收斂性分析............................. 29 3.5 模擬與缺陷分析......................... 31 3.5.1 模擬................................ 31 3.5.2 缺陷分析............................ 31 3.6 穿孔品質測試.......................... 34 3.6.1 延性破壞準則........................ 36 3.6.2 第五道次:穿孔模擬................... 39 3.6.3 臨界破壞值決定....................... 45 3.6.4 斜邊角度為1.33倍之穿孔模擬.............47 第四章 田口方法............................ 48 4.1 實驗步驟.............................. 48 4.2 參數決定.............................. 50 4.3 直交表配置............................ 52 4.4 二值化................................ 54 第五章 結果與討論.......................... 57 5.1 田口方法實驗結果....................... 57 5.2 實驗分析.............................. 60 5.2.1 ANOM平均值分析...................... 60 5.2.2 ANOVA變異數分析..................... 63 5.2.3 最佳實驗推定......................... 64 5.2.4 確認實驗............................ 65 5.3 關油改善結果......................... 66 5.4 穿孔品質結果......................... 69 5.5 研究方法適用性....................... 70 第六章 結論與建議......................... 72 6.1 結論................................. 72 6.2 建議................................. 73 文獻回顧................................. 74

    Altan, T. and Vazquez, V. "Numerical Process Simulation for Tool and Process Design in Bulk Metal Forming" CIRP Annals - Manufacturing Technology 45(2): 599-615. (1996).
    Chan, W. L., Fu, M. W., Lu, J. and Chan, L. C. "Simulation-enabled study of folding defect formation and avoidance in axisymmetrical flanged components" Journal of Materials Processing Technology 209(11): 5077-5086. (2009).
    Clift, S. E., Hartley, P., Sturgess, C. and Rowe, G. "Fracture prediction in plastic deformation processes" International Journal of Mechanical Sciences 32(1): 1-17. (1990).
    Cockcroft, M. G. and Latham, D. J. "A simple criterion of fracture for ductile metals". (1966).
    Davidson, M. J., Balasubramanian, K. and Tagore, G. R. N. "Experimental investigation on flow-forming of AA6061 alloy—A Taguchi approach" Journal of Materials Processing Technology 200(1-3): 283-287. (2008).
    Fowlkes, W. Y. and Creveling, C. M. "Engineering methods for robust product design" Engineering Process Improvemente Series. (1995).
    Freudenthal, A. M. "The inelastic behavior of engineering materials and structures" Wiley. (1950).
    Fu, M. W., Yong, M. S. and Muramatsu, T. "Die fatigue life design and assessment via CAE simulation" The International Journal of Advanced Manufacturing Technology 35(9-10): 843-851. (2006).
    Gopalsamy, B. M., Mondal, B. and Ghosh, S. "Taguchi method and ANOVA: An approach for process parameters optimization ofhard machining while machining hardened steel". (2009).
    Gouveia, B., Rodrigues, J. and Martins, P. "Ductile fracture in metalworking: experimental and theoretical research" Journal of materials processing technology 101(1): 52-63. (2000).
    Huh, H., Lim, J. and Park, S. "High speed tensile test of steel sheets for the stress-strain curve at the intermediate strain rate" International Journal of Automotive Technology 10(2): 195-204. (2009).
    Ko, D.-C., Kim, D.-H. and Kim, B.-M. "Application of artificial neural network and Taguchi method to preform design in metal forming considering workability" International Journal of Machine Tools and Manufacture 39(5): 771-785. (1999).
    Ko, D.-C., Kim, D.-H. and Kim, B.-M. "Finite element analysis for the wear of Ti–N coated punch in the piercing process" Wear 252(11): 859-869. (2002).
    Kobayashi, S., Kobayashi, S., Oh, S.-I. and Altan, T. "Metal forming and the finite-element method" Oxford University Press on Demand. (1989).
    Lee, M. C., Chung, S. H. and Joun, M. S. "Automatic and precise simulation of multistage automatic cold-forging processes by combined analyses of two- and three-dimensional approaches" The International Journal of Advanced Manufacturing Technology 41(1-2): 1-7. (2008).
    Lee, Y.-C. and Chen, F.-K. "Fatigue life of cold-forging dies with various values of hardness" Journal of Materials Processing Technology 113(1): 539-543. (2001).
    McClintock, F. A. A criterion for ductile fracture by the growth of holes, ASME. (1968).
    McCormack, C. and Monaghan, J. "A finite element analysis of cold-forging dies using two-and three-dimensional models" Journal of materials processing technology 118(1): 286-292. (2001).
    Oyane, M., Sato, T., Okimoto, K. and Shima, S. "Criteria for ductile fracture and their applications" Journal of Mechanical Working Technology 4(1): 65-81. (1980).
    Rice, J. R. and Tracey, D. M. "On the ductile enlargement of voids in triaxial stress fields∗" Journal of the Mechanics and Physics of Solids 17(3): 201-217. (1969).
    Sanjari, M., Taheri, A. K. and Movahedi, M. R. "An optimization method for radial forging process using ANN and Taguchi method" T he International Journal of Advanced Manufacturing Technology 40(7-8): 776-784. (2008).
    Song, J. H. and Im, Y. T. "Process design for closed-die forging of bevel gear by finite element analyses" Journal of Materials Processing Technology 192-193: 1-7. (2007).
    Wang, J. L., Fu, M. W. and Ran, J. Q. "Analysis and avoidance of flow-induced defects in meso-forming process: simulation and experiment" The International Journal of Advanced Manufacturing Technology 68(5-8): 1551-1564. (2013).
    Wei, F. and Lin, H. "Multi-objective optimization of process parameters for the helical gear precision forging by using Taguchi method" Journal of Mechanical Science and Technology 25(6): 1519-1527. (2011).
    王水鐸 "應用破壞能量於冷鍛可成形性評估與多道次冷打頭模具設計最佳化之研究" 成功大學機械工程學系博士論文: 1-126. (2006).
    吳明學 "自固接合螺帽產品設計及其塑性流動接合製程之研究" 成功大學機械工程學系學位論文: 1-88. (2010).
    李榮顯 "塑性加工學" 三民書局. (1987).
    李輝煌 "田口方法-品質設計的原理與實務" 高立圖書有限公司. (2004).
    張哲維 "知識可擴充之本體論專家系統建構—以冷鍛輪緣螺帽製程及模具設計為例" 成功大學機械工程學系碩士論文: 1-69. (2016).
    黃鈺惠 "具助推裝置之金屬管材旋轉彎曲成形製程特性研究" 成功大學機械工程學系碩士論文: 1-99. (2016).

    下載圖示 校內:2019-08-01公開
    校外:2022-08-01公開
    QR CODE