| 研究生: |
陳正哲 Chen, Zheng-Zhe |
|---|---|
| 論文名稱: |
透過低劑量X光激發的長時間放光材料鋅鎵鉻氧化物奈米粒子做深層組織的影像 Low-dose of x-ray-excited long-lasting luminescent ZnGa2O4:Cr3+ nanocubes for deep-seated tissue imaging |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 長時間放光 、X光 、組織穿透深度 、生物造影 |
| 外文關鍵詞: | persistent luminescence, X-ray, tissue penetration depth, bioimaging |
| 相關次數: | 點閱:35 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋅鎵鉻氧化物奈米粒子為一常見的長時間放光奈米材料,其應用性很廣,然而在文獻中其奈米粒子的形貌通常為不規則狀且常呈現略帶聚集的狀態,因此在本篇研究中,我們合成出了新型態、型態上也較為均勻的鋅鎵鉻氧化物奈米粒子,並研究、比較其鋅鎵鉻氧化物奈米粒子的光學性質,如螢光的強度和長時間放光持續的時間是否也會因為其形貌的改善而跟著提升。
緊接著我們也針對此材料能被X光所激發放出持續放光的近紅外光的現象做了一系列輻射放光的實驗跟測試,並在最後的應用,我們利用X光沒有組織穿透深度限制的特性針對老鼠深層的組織及器官,如肝臟做生物造影(bioimaging)。
Zinc gallium oxide doping chromium (ZnGa2O4:Cr3+ , ZGC) nanoparticle is a common used long-lasting luminescence nanomaterial. It has already been applied in different areas. However, most of the ZGC nanoparticles in literatures don’t have good unified morphology, at best the shape of sub sphere, even sometimes in aggregated form. And that’s what we have done and improved in the research. We successfully synthesis and create a new form of ZGC that has fine cubic shape and good dispersibility. We had also further investigated if the optical properties, such as the fluorescence intensity and the duration time of persistent luminescence, will get better improvement when the morphology and the structure of ZGC had been optimized.
We had also investigated and did a series of test base on the material’s x-ray-induced NIR persistent luminescence generating phenomenon. Finally, we take the advantage of x-ray’s limitless-tissue-penetrating ability to do the deep-seated tissue and organ’s bioimaging in mouse.
1.Wang, J.; Ma, W.; Wang, Y.; Shen, H.; Yuan, Q. Nanoscale 2017, 9, 6204.
2.Xu, J.; Tanabe, S. J. lumin. 2019, 205, 581.
3.Hölsä, J. Electrochem. Soc. Interface, 200, 18, 42.
4.Mika, L.; Taneli, L.; Marja, M.; Kari O, E.; Aleksei, K.; Stefan, C.; Edmund, W.; Hermi F., B.; Macro, B.; Högne, J.; Hölsä, J. Eur. J. Mineral.2012, 24, 885.
5.Hoogenstraaten, W.; Klasens, H. A. J. Electrochem. Soc. 1953, 100, 366.
6.Gong, Y.; Wang, Y.; Li, Y.; Xu, X.; Zeng, W. Opt. Express 201, 19, 4310.
7.Dorenbos, P. J. Electrochem. Soc. 2005, 152, H107.
8.Rojas-Hernandez, R. E.; Rubio-Macros, F.; Rodriguez, M. Á.; Fernandez, J. F. Renew. Sust. Energy. Rev. 2018, 81, 2759.
9.Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. J. Mater. Sci. 2001, 20, 1505.
10.Wang, Q. Q.; Wang, N.; He, S. F.; Zhao, J. H.; Fang, J.; Shen, W. G. J. Electrochem. Soc. 1996, 143, 2670.
11.Botterman, J.; Joos, J. J.; Smet, P. F. Phys. Rev. B. 2014, 90, 085147.
12.Wang, Y.; Wang, Z. J. Rare Earth. 2006, 24, 25.
13.Kücük, N.; Ayvacikli, M.; Akça, S.; Yüksel, M.; Guinea, J. G.; Karabulut, Y.; Canimoglu, A.; Topaksu, M.; Can, N. Appl. Radiat. Isot. 2017, 127, 35.
14.Maia, A. S.; Stefani, R.; Kodaira, C. A.; Felinto, M. C.F.C.; Teotonio, E. E.S.; Brito, H. F. Opt. Mater. 2008, 31, 440.
15.Pan, Z.; Lu, Y. Y.; Liu, F. Nat. Mater. 2012, 11, 58.
16.Maldiney, T.; Lecointr, A.; Viana, B.; Bessière, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D. J. Am. Chem. Soc. 2011, 133, 11810.
17.Eeckhout, K. V.; Bos, A. J. J.; Poelman, D.; Smet, P. F. Phys. Rev. B 2013, 87, 045126.
18.Bessière, A.; Sharma, S. K.; Basavaraju, N.; Priolkar, K. R.; Binet, L.; Viana, B.; Bos, A. J. J.; Maldiney, T.; Richard, C.; Scherman, D.; Gourier, D. Chem. Mater. 2014, 26, 1365.
19.Lu, Y. Y.; Liu, F.; Gu, Z.; Pan, Z. J. lumin. 2011, 131, 2781.
20.Chen, H.; Zheng, B.; Liang, C.; Zhao, L.; Pan, H.; Ji, W.; Gong, X.; Wang, H.; Chang, J. Mater. Sci. Eng. C 2017, 79, 372.
21.Wang, J.; Ma, Q.; Zheng, W.; Liu, H.; Yin, C.; Wang, F.; Chen, X.; Yuan, Q.; Tan, W. ACS Nano 2017, 11, 8185.
22.Quek, C. H.; Leong, K. W. Nanomaterials 2012, 2, 92.
23.Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009, 4, 710.
24.Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Nanoscale Horiz. 2016, 1, 168.
25.Onal, E. D.; Guven, K. J. Phys. Chem. C 2017, 121, 684.
26.Chen, M.; Fang, X.; Tang, S.; Zheng, N. Chem. Commun. 2012, 48, 8934.
27.Fan, W.; Huang, P.; Chen, X. Chem. Soc. Rev. 2016, 45, 6488.
28.Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. Curr. Opin. Chem. Biol. 2010, 14, 67.
29.Song, L.; Li, P. P.; Yang, W.; Lin, X. H.; Liang, H.; Chen, X. F.; Liu, G.; Li, J.; Yang, H. H. Adv. Funct. Mater. 2018, 28, 1707496.
30.Cline, B.; Delahunty, L.; Xie, J. WIREs Nanomed. Nanobiotechnol. 2018, 11, e1541.
31.Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. Nat. Biotechnol. 2004, 22, 969.
32.Wang, J.; Ma, Q.; Hu, X. X.; Liu, H.; Zheng, W.; Chen, X.; Yuan, Q.; Tan, W. ACS Nano 2017, 11, 8010.
33.Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; Scherman, D.; Richard, C. Nat. Mater. 2014, 13, 418.
34.Li, Z.; Zhang, Y.; Wu, X.; Ling, H.; Li, D.; Fan, W.; Han, G. J. Am. Chem. Soc. 2015, 137, 5304.