| 研究生: |
王絃襁 Wang, Hsien-Chiang |
|---|---|
| 論文名稱: |
多源分類決策融合之參數式權重估測法 Parametric Weight Estimation For Decision Fusion In Multisource Classification |
| 指導教授: |
謝璧妃
Hsieh, Pi-Fuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 權重估測 、決策融合 、多源 、參數式 |
| 外文關鍵詞: | Multisource, remote sensing, weight estimation, weight selection, linear opinion pool, logarithmic opinion pool |
| 相關次數: | 點閱:160 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
遙測影像資料如今已成功地應用於判識地表物質,進行地表分佈與變遷之研究。當遙測資料有多重來源時,為使其總體判識率能優於任一來源,宜須選取適切之融合機制,整合多重來源,達到截長補短之功效。整合的方法,除了資料直接融合之外,「決策融合」機制亦常廣為採用,最常見者,例如linear opinion pool (LOP) 及 logarithmic opinion pool (LOGP)。決策融合機制乃由各個來源決策所建立之一融合機制,主要是探討如何結合各個來源之事前機率,而首當其衝須面對的問題,乃結合權重之估測。許多研究藉由各來源之分類結果來給定權重,值得注意的是,這些給定權重的方法在分析過程中往往需要可觀之計算量。
為了減低計算量,讓權重之估測迅速而不失真,本研究提出一參數式權重估測方法。在資料為高斯分佈之假設前提下,同時分析「來源相關」與「特定來源下之類別相關」兩種資訊。另外,為了解決參數估測可能遇到的估測誤差問題,本研究提出一最佳化解法。
實驗結果顯示,本研究提出之方法可以有效減低計算量,而判識率仍能維持不墜,亦符合多重來源總體判識率高於單一來源之基本要求。
In multisource classification, the logarithmic opinion pool (LOGP) mechanism is a widely used approach to decision fusion for multiple sources. The key problem of the LOGP mechanism is how to estimate associated weights. A number of methods have been proposed for weight estimation. However, most of the methods are time consuming.
In order to reduce the computational load, a parametric weight estimation method is proposed in this study. Based on the Gaussian model assumption, the weight estimation method takes into account not only source-wise but also class-wise information. Besides, an optimization scheme for weight determination is presented.
Our experiments show that our parametric scheme for weight estimation gives comparable performance in accuracy and relatively promising results in speed, compared to previously proposed schemes.
[1] J. A. Benediktsson and I. Kanellopoulos, “Classification of multisource and hyperspectral data based on decision fusion,” IEEE Trans. Geosci. Remote Sensing, vol. 37, no. 3, pp. 1367-1377, May 1999.
[2] J. A. Benediktsson and P. H. Swain, “Consensus theoretic classification methods,” IEEE Trans. Syst. Man Cybern., vol. 22, no. 4, pp. 688-704, July/Aug. 1992.
[3] M. Petrakos, J. A. Benediktsson and I. Kanellopoulos, “The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion,” IEEE Trans. Geosci. Remote Sensing, vol. 39, no. 11, pp. 2539-2546, Nov. 2001
[4] M. Petrakos, I. Kanellopoulos and J. A. Benediktsson, “The effect of correlation on the accuracy of the combined classifier in decision level fusion,” Proc. 2000 Int. Geosci. Remote Sensing Symp. (IGARSS’2000), vol. 6, pp. 2623-2625, July 2000.
[5] M. C. Fairhurst and A. F. R. Rahman, “Enhancing consensus in multiple expert decision fusion,” IEE Proc. Vis. Image Signal Process., vol. 147, no. 1, pp. 39-46, Feb. 2000.
[6] S. Le Hegarat-Mascle, I. Bloch and D. Vidal-Madjar, “Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing,” IEEE Trans. Geosci. Remote Sensing, vol. 35, no. 4, pp. 1018-1031, July 1997.
[7] T. Lee, J. A. Richards, and P. H. Swain, “Probabilistic and evidential approaches for multisource data analysis,” IEEE Trans. Geosci. Remote Sensing, vol. GE-25, pp. 283-293, July 1987.
[8] H. Altincay and M. demirkler, “An information theoretic framework for weight estimation in the combination of probabilistic classifiers for speaker identification,” Speech Commun., vol. 30, no. 4, pp. 255-272, Apr. 2000.
[9] J. A. Benediktsson, P. H. Swain and O. K. Ersoy, “Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data,” IEEE Trans. Geosci. Remote Sensing, vol. 28, no. 4, pp. 540-554, July 2000.
[10] E. Binaghi, P. Madella, M. Grazia Montesano and A. Rampini,” Fuzzy contextual classification of multisource remote sensing images,” IEEE Trans. Geosci. Remote Sensing, vol. 35, no. 2, pp. 326-340, Mar. 1997.
[11] J. A. Benediktsson, J. R. Sveinsson and P. H. Swain, “Hybrid consensus theoretic classification,” IEEE Trans. Geosci. Remote Sensing, vol. 35, no. 4, pp. 833-843, July 1997.
[12] M. Petrakos, J. A. Benediktsson and I. Kanellopoulos, “The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion,” IEEE Trans. Geosci. Remote Sensing, vol. 39, no. 11, pp. 2539-2546, Nov. 2001.
[13] J. A. Benediktsson, J. R. Sveinsson, O. K. Ersoy and P. H. Swain, “Parallel consensual neural networks,” IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 54-64, Jan. 1997.
[14] M. Datcu, F. Melgani, A. Piardi and S. B. Serpico, “Multisource data classification with dependence trees,” IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 3, pp. 609-617, Mar. 2002.
[15] G. J. Briem, J. A. Benediktsson and J. R. Sveinsson, “Multiple Classifiers Applied to Multisource Remote Sensing Data,” IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 10, pp. 2291-2299, Oct. 2002.
[16] Y. S. Huang and C. Y. Suen, “A method of combining multiple experts for the recognition of unconstrained handwritten numerals,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 1, pp. 90-94, Jan. 1995.
[17] Q. P. Remund, D. G. Long and M. R. Drinkwater, “An iterative approach to multisensor sea ice classification,” IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 4, pp. 1843-1856, July 2000.
[18] A. H. S. Solberg, T. Taxt and A. K. Jain, “Markov random field model for classification of multisource satellite imagery,” IEEE Trans. Geosci. Remote Sensing, vol. 34, no. 1, pp. 100-113, Jan. 1996.
[19] L. Xu, A. Krzyzak and C. Y. Suen, “Methods of combining multiple classifiers and their applications to handwriting recognition,” IEEE Trans. Syst. Man Cybern., vol. 22, no. 3, pp. 418-435, May-June 1992.
[20] M. C. Fairhurst and A. F. R. Rahman, “Enhancing consensus in multiple expert decision fusion,” IEE Proc. Vis. Image Signal Process., vol. 147, no. 1, pp. 39-46, Feb. 2000.
[21] J. A. Benediktsson and P.H. Swain, “A Method of Statistical Multisource Classification with a Mechanism to Weight the Influence of the Data Sources,” Proc. 1989 Int. Geosci. Remote Sensing Symp. (IGARSS’89), vol. 2, pp. 517-520, July 1989.
[22] W. J. Krzanowski, Principles of multivariate analysis: A user’s perspective. New York: Clarendon press, 1988.
[23] S. Theodoridis and K. Koutroumbas, Pattern recognition. San Diego: Academic Press, 1999.
[24] D. G. Luenberger, Linear and nolinear programming, 2nd ed. Mass.: Addison-Wesley, 1984.
[25] K. Fukunaga, Introduction to statistical pattern recognition, 2nd ed. Boston: Academic Press, 1990.
[26] J. A. Freeman and D. M. Skapura, Neural networks: algorithms, applications, and programming techniques. Mass.: Addison-Wesley, 1991.
[27] L. Fausett, Fundamentals of neural networks: architectures, algorithms, and applications. NJ: Prentice-Hall, 1994.