| 研究生: |
楊睿哲 Yang, Jui-Tse |
|---|---|
| 論文名稱: |
基於Zernike模態之適應性光學整合於雙光子激發螢光顯微術 Zernike Model-based Adaptive Optics for Two-photon Excited Fluorescence Microscopy |
| 指導教授: |
張家源
Chang, Chia-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 多光子激發螢光顯微鏡 、適應性光學 、遙控調焦 、Shack-Hartmann波前感測器 、可調變式聚焦鏡 |
| 外文關鍵詞: | multi-photon excitation fluorescence microscopy, adaptive optics, remote focusing, Shack-Hartmann wavefront sensor, deformable mirror |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於多光子激發螢光顯微鏡(multi-photon excited fluorescence microscopy,MPEFM)系統的深度成像能力及高空間分辨率特性,目前已成為生物組織研究中不可或缺的重要工具;而為進一步提升螢光影像之解析度與對比度,本論文將其與適應性光學(adaptive optics,AO)概念相結合,預先補償系統及樣品上的像差。
本論文首先建立一套AO系統,利用15項Zernike多項式(Zernike polynomial)作為數學模型,並分別藉由自製Shack-Hartmann波前感測器(Shack-Hartmann wavefront sensor,SHWS)與可調變式聚焦鏡(deformable mirror,DM)作為波前感測器及波前修正元件,接著結合CameraLink高速傳輸介面及現場可程式化邏輯閘陣列(field programmable gate array,FPGA)的即時運算能力,使系統達到200 Hz之修正像差效果;此外,由於是利用平行化PI控制器(parallel PI controller),藉由Zernike多項式各像差間相互正交的特性對DM產生的面形進行控制,因此能夠單獨調控各像差,使系統於修正干擾同時控制聚焦點於光軸上的位置,達成快速遙控調焦(remote focusing,RF)之目標。
最後本論文將AO概念與MPEFM系統整合,同樣以DM作為波前修正元件,藉由分析螢光影像強度,逐一調整DM產生出的各項像差,找尋出修正干擾的最佳Zernike係數組合,達成非感測試AO (sensorless AO)。
The multi-photon excitation fluorescence microscopy (MPEFM) system is an advanced and powerful imaging technology widely employed in the fields of life sciences and biomedical research. By utilizing the non-linear optical process of multi-photon excitation, it offers high-resolution imaging, deep tissue penetration, and three-dimensional reconstruction capabilities. In this study, we incorporated the concept of adaptive optics (AO) into the MPEFM system to achieve aberration correction and remote focusing (RF). This was accomplished by leveraging the high response rate of a deformable mirror (DM) and the orthogonal properties of Zernike polynomials, which represent various aberrations. Before performing aberration correction, a three-step identification process was conducted to ensure precise compensation of individual aberrations by the DM. The results demonstrated that this process yielded a signal-to-noise (SNR) ratio exceeding 20.3 dB for all aberrations, without regarding the x-tilt and y-tilt terms. In the final experiment, our adaptive optics system exhibited a reduction in wavefront variance by approximately 475-fold and enabled a remote focusing range of 128 µm. Lastly, the integration of the AO system into the MPEFM system led to a more than three-fold increase in fluorescence image intensity.
1. R. K. Tyson, and B. W. Frazier, Principles of adaptive optics (CRC press, 2022).
2. S. Hippler, “Adaptive optics for extremely large telescopes,” Journal of Astronomical Instrumentation 8(02), 1950001 (2019).
3. F. Rigaut, and B. Neichel, “Multiconjugate adaptive optics for astronomy,” Annual Review of Astronomy and Astrophysics 56, 277-314 (2018).
4. S. A. Burns, A. E. Elsner, K. A. Sapoznik, R. L. Warner, and T. J. Gast, “Adaptive optics imaging of the human retina,” Progress in Retinal and Eye Research 68, 1-30 (2019).
5. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” Journal of the Optical Society of America A 14(11), 2884-2892 (1997).
6. Z. Qin, S. He, C. Yang, J. S.-Y. Yung, C. Chen, C. K.-S. Leung, K. Liu, and J. Y. Qu, “Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo,” Light: Science & Applications 9(1), 79 (2020).
7. L. Streich, J. C. Boffi, L. Wang, K. Alhalaseh, M. Barbieri, R. Rehm, S. Deivasigamani, C. T. Gross, A. Agarwal, and R. Prevedel, “High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy,” Nature Methods 18(10), 1253-1258 (2021).
8. P. S. Salter and M. J. Booth, “Adaptive optics in laser processing,” Light: Science & Applications 8(1), 110 (2019).
9. G.-L. Roth, S. Rung, C. Esen, and R. Hellmann, “Microchannels inside bulk PMMA generated by femtosecond laser using adaptive beam shaping,” Optics Express 28(4), 5801–5811 (2020).
10. S. Hasegawa, and Y. Hayasaki, “Femtosecond laser processing with adaptive optics based on convolutional neural network,” Optics and Lasers in Engineering 141, 106563 (2021).
11. M. Jenne, D. Flamm, T. Ouaj, J. Hellstern, J. Kleiner, D. Grossmann, M. Koschig, M. Kaiser, M. Kumkar, and S. Nolte, “High-quality tailored-edge cleaving using aberration-corrected Bessel-like beams,” Optics Letters 43(13), 3164–3167 (2018).
12. S. Hasegawa, H. Ito, H. Toyoda, and Y. Hayasaki, “Massively parallel femtosecond laser processing,” Optics Express 24(16), 18513–18524 (2016).
13. C. Maibohm, O. F. Silvestre, J. Borme, M. Sinou, K. Heggarty, and J. B. Nieder, “Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications,” Scientific Reports 10(1), 8740 (2020).
14. O. Hofmann, J. Stollenwerk, and P. Loosen, “Design of multi-beam optics for high throughput parallel processing,” Journal of Laser Applications 32(1), 012005 (2020).
15. N. Ji, “Adaptive optical fluorescence microscopy,” Nature Methods 14(4), 374-380 (2017).
16. M. Booth, D. Andrade, D. Burke, B. Patton, and M. Zurauskas, “Aberrations and adaptive optics in super-resolution microscopy,” Microscopy 64(4), 251-261 (2015).
17. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Optics Letters 32(14), (2007).
18. E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proceedings of the National Academy of Sciences 109(8), 2919-2924 (2012).
19. S. Y. Kang, M. Duocastella, and C. B. Arnold, “Variable optical elements for fast focus control,” Nature Photonics 14(9), 533-542 (2020).
20. P. Pozzi, M. Quintavalla, A. B. Wong, J. G. G. Borst, S. Bonora, and M. Verhaegen, “Plug-and-play adaptive optics for commercial laser scanning fluorescence microscopes based on an adaptive lens,” Optics Letters 45(13), 3585-3588 (2020).
21. C. Efstathiou and V. M. Draviam, “Electrically tunable lenses – eliminating mechanical axial movements during high-speed 3D live imaging,” Journal of Cell Science 134(16), jcs258650 (2021).
22. C. Fang, Y. Cao, D. Jiang, J. Tian, and C. Zhang, “Triboelectric effect-modulated varifocal liquid lens,” Microsystems & Nanoengineering 6(1), 61 (2020).
23. L. Kong, J. Tang, J. P. Little, Y. Yu, T. Lämmermann, C. P. Lin, R. N. Germain, and M. Cui, “Continuous volumetric imaging via an optical phase-locked ultrasound lens,” Nature Methods 12(8), 759–762 (2015).
24. L. Kong, J. Tang, and M. Cui, “Multicolor multiphoton in vivo imaging flow cytometry,” Optics Express 24(6), 6126–6135 (2016).
25. O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nature Communications 7, 11928 (2016).
26. R. Liu, N. Ball, J. Brockill, L. Kuan, D. Millman, C. White, A. Leon, D. Williams, S. Nishiwaki, S. de Vries, J. Larkin, D. Sullivan, C. Slaughterbeck, C. Farrell, and P. Saggau, “Aberration-free multi-plane imaging of neural activity from the mammalian brain using a fast-switching liquid crystal spatial light modulator,” Biomedical Optics Express 10(10), 5059-5080 (2019).
27. Y. Yang, W. Chen, J. L. Fan, and N. Ji, “Adaptive optics enables aberration-free single-objective remote focusing for two-photon fluorescence microscopy,” Biomedical Optics Express 12(1), 354–366 (2021).
28. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Optics Letters 33(18), 2146–2148 (2008).
29. M. Duocastella, B. Sun, and C. B. Arnold, “Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics,” Journal of Biomedical Optics 17(5), 050505 (2012).
30. M. Žurauskas, O. Barnstedt, M. Frade-Rodriguez, S. Waddell, and M. J. Booth, “Rapid adaptive remote focusing microscope for sensing of volumetric neural activity,” Biomedical Optics Express 8(10), 4369-4379 (2017).
31. Edmund Optics, Introduction of liquid lens, From:
https://www.edmundoptics.com/knowledge-center/application-notes/imaging/liquid-lenses-in-imaging/
32. Wikipedia, Introduction of spatial light modulator, From:
https://en.wikipedia.org/wiki/Spatial_light_modulator
33. A. V. Kudryashov, A. L. Rukosuev, A. N. Nikitin, I. V. Galaktionov, and J. V. Sheldakova, “Real-time 1.5 kHz adaptive optical system to correct for atmospheric turbulence,” Optics Express 28(25), 37546-37552 (2020).
34. L. C. Andrews, and R. L. Phillips, Laser beam propagation through random media (Scopus, 2005).
35. S. Mauch, and J. Reger, Real-Time Adaptive Optic System Using FPGAs (IntechOpen, 2017).
36. S. Leemans, A. Dvornikov, T. Gallagher, and E. Gratton, “AO DIVER: Development of a three-dimensional adaptive optics system to advance the depth limits of multiphoton imaging,” APL Photonics 5(12), 120801 (2020).
37. J. Antonello, T. van Werkhoven, M. Verhaegen, H. H. Truong, C. U. Keller, and H. C. Gerritsen, “Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy,” Journal of the Optical Society of America A 31(6), 1337-1347 (2014).
38. M. Ren, J. Chen, D. Chen, and S.-C. Chen, “Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics,” Optics Letters 45(9), 2656-2659 (2020).
39. V. Y. Zavalova, and A. V. Kudryashov, “Shack-Hartmann wavefront sensor for laser beam analyses,” In High-Resolution Wavefront Control: Methods, Devices, and Applications III 4493, 277-284 (2002).
40. B. C. Platt, and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” Journal of Refractive Surgery 17(5), S573-S577 (2001).
41. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” Journal of the Optical Society of America 70(8), 998-1006 (1980).
42. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Applied Optics 33(34), 8121–8124 (1994).
43. J. C. Wyant, and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied optics and optical engineering, R. R. Shannon, and J. C. Wyant, eds. (Elsevier ,1992) pp. 1-53.
44. Basler, Datasheet of acA2040-90um, From:
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca2040-90um/
45. Basler, Datasheet of acA2040-180km, From:
https://www.baslerweb.com/cn/products/cameras/area-scan-cameras/ace/aca2040-180km/
46. Edmund Optics, Datasheet of #64-482, From:
https://www.edmundoptics.com/p/microlens-array-10-x-10mm-500mum-pitch-05deg-divergence/19194/
47. V. Lakshminarayanan, and A. Fleck, “Zernike polynomials: a guide,” Journal of Modern Optics 58(7), 545-561 (2011).
48. A. Yen, “Straightforward path to Zernike polynomials,” Journal of Micro/Nanopatterning, Materials, and Metrology 20(2), 020501-020501 (2021).
49. Wyant College of Optical Sciences, Introduction of Zernike polynomial, From:
https://wp.optics.arizona.edu/jcwyant/miscellaneous/neat-graphics/zernike-polynomials/
50. Basler, Introduction of CameraLink, From:
https://www.baslerweb.com/en/downloads/document-downloads/information-for-framegrabber-designers-for-basler-ace-basler-beat-camera-link/
51. Thorlabs, Introduction of deformable mirror, From:
https://www.rp-photonics.com/deformable_mirrors.html
52. Active Optical Systems, Datasheet of MDM1-32S-4, From:
https://aos-llc.com/wp-content/uploads/MDM_Datasheet.pdf
53. Active Optical Systems, Manual of MDM1-32S-4, From:
https://www.aos-llc.com/wp-content/uploads/Deformable-Mirror-Manual.pdf
54. Texas Instruments, Datasheet of D/A converter, From:
https://www.ti.com/lit/ds/symlink/dac121s101.pdf?ts=1686406150600&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FDAC121S101
55. Analog Devices, Datasheet of ADG732, From:
https://www.analog.com/media/en/technical-documentation/data-sheets/adg726_732.pdf
56. L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Applied Optics 38(1), 168-176 (1999).
57. L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” Applied Optics 38(28), 6019-6026 (1999).
58. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publications of the Astronomical Society of the Pacific 65(386), 229-236 (1953).
59. S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jiang, “Double-deformable-mirror adaptive optics system for phase compensation,” Applied Optics 45(12), 2638-2642 (2006).
60. Q. Zhang, Q. Hu, C. Berlage, P. Kner, B. Judkewitz, M. Booth, and N. Ji, “Adaptive optics for optical microscopy,” Biomedical Optics Express 14(4), 1732-1756 (2023).
61. J. M. Bueno, M. Skorsetz, S. Bonora, and P. Artal, “Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens,” Optics Express 26(11), 14278-14287 (2018).
62. OP Mount Instrument, Datasheet of MO-10X, From:
https://www.opmount.com.tw/cht/Product_detail/955/270.html
63. Basler, Datasheet of daA2500-14um, From:
https://www.baslerweb.com/zh-tw/products/cameras/area-scan-cameras/dart/daa2500-14um-cs-mount/
64. C.-L. Chung, T. Furieri, J.-Y. Lin, T.-C. Chang, J.-C. Lee, Y.-F. Chen, M.-K. Pan, S. Bonora, and S.-W. Chu, “Plug-and-play adaptive optics for two photon high-speed volumetric imaging,” Journal of Physics: Photonics 4(2), 024003 (2022).
65. T. Chakraborty, B. Chen, S. Daetwyler, B.-J. Chang, O. Vanderpoorten, E. Sapoznik, C. F. Kaminski, T. P. J. Knowles, K. M. Dean, and R. Fiolka, “Converting lateral scanning into axial focusing to speed up three-dimensional microscopy,” Light: Science & Applications 9(1), 165 (2020).
66. Wikipedia, Introduction of Gaussian beam, From:
https://en.wikipedia.org/wiki/Gaussian_beam
67. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy.” Science 248(4951), 73-76 (1990).
68. HAKUTO, Introduction of photomultiplier tube, From:
https://www.hakuto.com.tw/tw/products_d.php?p=228
69. Thorlabs, Product information of DMP40/M-F01, From:
https://www.thorlabs.com/thorproduct.cfm?partnumber=DMP40-F01
70. Thorlabs, Raw data of reflectance, From:
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.thorlabs.com%2Fimages%2FTabImages%2FThorlabs_UV-Enhanced_Aluminum_Coating.xlsx&wdOrigin=BROWSELINK
71. Thorlabs, Reflectance of UV-enhanced aluminum coating mirror, From:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=12393
72. Thorlabs, Manual of DMP40/M-F01, From:
https://www.thorlabs.com/drawings/d93e9ad8e632a5d8-3DFCC849-F0F2-7331-F5252D8A60E88237/DMP40_M-F01-Manual.pdf
73. W. J. Shain, N. A. Vickers, B. B. Goldberg, T. Bifano, and J. Mertz, “Extended depth-of-field microscopy with a high-speed deformable mirror,” Optics Letters 42(5), 995-998 (2017).
74. T. P. Burghardt, “Single molecule fluorescence image patterns linked to dipole orientation and axial position: application to myosin cross-bridges in muscle fibers,” Public Library of Science One 6(2), e16772 (2011).
75. K. Wang, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nature Communications 6(1), 7276 (2015).
76. R. Liu, Z. Li, J. S. Marvin, and D. Kleinfeld, “Direct wavefront sensing enables functional imaging of infragranular axons and spines,” Nature Methods 16(7), 615-618 (2019).
校內:2026-07-31公開