研究生: |
郭慧琪 Kuo, Hui-Chi |
---|---|
論文名稱: |
金殼包覆上轉換奈米棒狀材料的合成研究 Synthesis of the upconversion nanorods coating with gold nanoshell |
指導教授: |
葉晨聖
Yeh, Cheng-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 上轉換奈米材料 、金殼 、螢光標定 、光熱治療 |
外文關鍵詞: | upconversion, gold shell, bioimaging, photothermal therapy |
相關次數: | 點閱:93 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摻雜鑭系元素的上轉換奈米粒子將近紅外光轉換成紫外光與可見光波段區域的性質近年來被蓬勃的應用在生醫癌症治療上。本實驗先合成棒狀的上轉換奈米粒子,然後將二氧化矽包覆外圍使材料轉水相,接著在二氧化矽的表面修飾上3-氨基丙基三甲氧基甲矽烷(APTES)使其表面帶正電,再用晶種成長法在二氧化矽的表面包覆上金殼,最後再利用鹼性氨水溶液將二氧化矽水解侵蝕,進而形成創新的rod-in-shell結構。由於金殼藉由表面電漿耦合可以增強上轉換奈米粒子的螢光放光,在生物顯影的應用會更有利也會幫助腫瘤位置的標定;另外金殼本身也能用來做光熱治療,因此本材料在生醫上可以做有效的應用與癌症的治療。
Lanthanide-doped upconversion nanoparticles converting near-infrared light to visible light have been recognized as an efficient and versatile tool of bioimaging and cancer therapy. Herein, we synthesize upconversion nanorods coated with silica shell modifying (3-Aminopropyl)triethoxysilane outside the surface. And these UCNP@SiO2-APTES are encapsulated in gold nanoshell by well-known seed growth method. After accomplishing double layer core shell UCNP@SiO2-Au shell, the final step is to etch the silica layer in basic ammonia solution by hydrolysis and construct a rod-in-shell structure. The gold nanoshell will be expected to increase upconversion fluorescence due to surface plasmon-coupled emission; therefore application in bioimaging will be more obviously and benefit for tumor targeting. Besides gold nanoshell exist photothermal therapy for ablation of tumor cell as well. As the result, the composite rod-in-shell nanostructure may have great potential for applications in biomedical imaging and cancer treatment.
1.Faraday, M., The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philos. Tran. R. Soc. Lond. 147 (0), 145-181, 1857.
2.Gimzewski, J.; Humbert, A., Scanning tunneling microscopy of surface microstructure on rough surfaces. IBM J. Res. Dev. 30 (5), 472-477, 1986.
3.Kroto, H. W.; Allaf, A. W.; Balm, S. P., C60: Buckminsterfullerene. Chem. Rev. 91 (6), 1213-1235, 1991.
4. Alivisatos, A. P., Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 1996.
5. 伊邦躍, 奈米時代. 五南出版社, 2002.
6. 王崇人, 科學發展月刊. 48, 354, 2002.
7. Memming, R., Semiconductor electrochemistry. Wiley-vch, 2008.
8. Lipka, J.; Semmler-Behnke, M.; Sperling, R. A.; Wenk, A.; Takenaka, S.;Schleh, C.; Kissel, T.; Parak, W. J.; Kreyling, W. G., Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 31 (25), 6574-6581, 2010.
9. Turkevich, J.; Garton, G.; Stevenson, P. C., The color of colloidal gold. J. Colloid Sci. 9, 1954.
10. Mathias, B.; Merryl, W.; Donald, B.; David, J. S.; Robin, W., Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc. Chem. Commun. 1994.
11. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phy. Chem. B109 (29), 13857-13870, 2005.
12. Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P., Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43 (28), 3673-3677, 2004.
13. (a) Wang, Z. L., Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B.104, 2000; (b) Andrea, R. T.; Susan, H.; Peidong, Y., Shape control of colloidal metal nanocrystals. Small. 4, 310-325, 2008.
14. Papavassiliou, G. C., Surface plasmons in small Au-Ag alloy particles. J. Phy. F: Met. Phy. 6 (4), L103, 1976.
15. Shi, H.; Zhang, L.; Cai, W., Composition modulation of optical absorption in AgAu alloy nanocrystals in situ formed within pores of mesoporous silica. J. Appl. Phys. 87, 1572-1574, 2000.
16. (a) Chen, Y.-H.; Yeh, C.-S., A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver alloy from gold–silver colloidal mixtures. Chem. Commun. 4, 371-372, 2001; (b) Chen, Y.-H.; Tseng, Y.-H.; Yeh, C.-S., Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles. J. Mater. Chem. 12 (5), 1419-1422, 2002.
17. Luis, M. L.-M.; Michael, G.; Paul, M., Synthesis of nanosized gold−silica core−shell particles. Langmuir 12, 1996.
18. Sun, Y.; Mayers, B.; Xia, Y., Metal Nanostructures with hollow interiors. Adv. Mater. 15, 641-646, 2003.
19. Eustis, S.; el-Sayed, M. A., Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35 (3), 209-217, 2006.
20. Stewart, M.; Anderton, C.; Thompson, L.; Maria, J.; Gray, S.; Rogers, J.; Nuzzo, R., Nanostructured plasmonic sensors. Chem. Rev. 108 (2), 494-521, 2008.
21. Weissleder, R., A clearer vision for in vivo imaging. Nat. Biotechnol. 19 (4), 316-317, 2001.
22. He, X.; Wang, K.; Cheng, Z., In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Nanobiotechnol 2 (4), 349-366, 2010.
23. Wang, F.; Liu, X., Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38 (4), 976-989, 2009.
24. Diamente, P. R.; Raudsepp, M.; Veggel, F. C. J. M. v., Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 μm photoluminescence. Adv. Funct. Mater. 17, 363-368, 2007.
25. Zhenhe, X.; Chunxia, L.; Piaoping, Y.; Cuimiao, Z.; Shanshan, H.; Jun, L., Rare earth fluorides nanowires/nanorods derived from hydroxides: hydrothermal synthesis and luminescence properties. Cryst. Growth Des. 9, 4752-4758, 2009.
26. Vennerberg, D.; Lin, Z., Upconversion nanocrystals: Synthesis, properties, assembly and applications. Sci. Adv. Mater. 3 (1), 26-40, 2011.
27. Bloembergen, N., Solid state infrared quantum counters. Phys. Rev. Lett. 2 (3), 84-85, 1959.
28. Heer, S.; Kompe, K.; Godel, H. U.; Haase, M., Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102-2105, 2004.
29. (a) Thoma, R. E.; Insley, H.; Hebert, G. M., The sodium fluoride-lanthanide trifluoride systems. Inorg. Chem. 5, 1966; (b) Wang, F.; Han, Y.; Lim, C. S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature. 463 (7284), 1061-1065, 2010.
30. Wang, G.; Peng, Q.; Li, Y., Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131 (40), 14200-14201, 2009.
31. Marie-France, J., Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 11, 181-203, 1999.
32. Auzel, F. E., Materials and devices using double-pumped-phosphors with energy transfer. Proceedings of the IEEE. 61 (6), 758-786, 1973.
33. Chivian, J. S.; Case, W.; Eden, D., The photon avalanche: A new phenomenon in Pr based infrared quantum counters. Appl. Phys. Lett. 35, 124-125, 1979.
34. Hans, U. G.; Markus, P., Near-infrared to visible photon upconversion processes in lanthanide doped chloride, bromide and iodide lattices. J. Alloys Compd. 303, 307-315, 2000.
35. Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C.; Xu, S., Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed. Nnanotech. Boil. Med. 7 (6), 710-729, 2011.
36. Menyuk, N.; Dwight, K.; Pierce, J., NaYF4: Yb, Eran efficient upconversion phosphor. Appl. Phys. Lett. 21 (4), 159-161, 1972.
37. Guangshun, Y.; Huachang, L.; Shuying, Z.; Yue, G.; Wenjun, Y.; Depu, C.; Liang-Hong, G., Synthesis, characterization, and biological application of size-Controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 4, 2191-2196, 2004.
38. Zhang, Y. W.; Sun, X.; Si, R.; You, L. P.; Yan, C. H., Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 127 (10), 3260-3261, 2005.
39. Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H., High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128 (19), 6426-6436, 2006.
40. Lin, W.; Wenjun, Z.; Weihong, T., Bioconjugated silica nanoparticles: development and applications. Nano Research . 1, 99-115, 2008.
41. (a) Helmut, S.; Pavel, P.; Karsten, K.; Markus, H., Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission. Chem. Mater. 19, 1396-1400, 2007; (b) Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C., Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130 (10), 3023-3029, 2008.
42. Guang-Shun, Y.; Gan-Moog, C., Water-soluble NaYF4:Yb,Er(Tm)/NaYF4 polymer core/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341-343, 2007.
43. (a) Yi, G. S.; Chow, G. M., Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16, 2324-2329, 2006; (b) Boyer, J. C.; Manseau, M. P.; Murray, J. I.; van Veggel, F. C., Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir. 26 (2), 1157-1164, 2010.
44. Li, Z.; Zhang, Y., Monodisperse silica-coated polyvinyl pyrrolidone/ NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. Int. Ed. 45 (46), 7732-7735, 2006.
45.http://en.wikipedia.org/wiki/File:MolecularImagingTherapy.jpg.
46. Cheng, F.-Y.; Su, C.-H.; Wu, P.-C.; Yeh, C.-S., Multifunctional polymeric nanoparticles for combined chemotherapeutic and near-infrared photothermal cancer therapy in vitro and in vivo. Chem. Commun. 46 (18), 3167-3169, 2010.
47. (a) You, J.; Zhang, G.; Li, C., Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano.4 (2), 1033-1041, 2010; (b) Jaemoon, Y.; Jaewon, L.; Jinyoung, K.; Seung Jae, O.; Hyun-Ju, K.; Joo-Hiuk, S.; Kwangyeol, L.; Jin-Suck, S.; Yong-Min, H.; Seungjoo, H., Smart Drug-Loaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human Epithelial Cancer. Adv. Mater. 21, 4339-4342, 2009.
48. Yavuz, M.; Cheng, Y.; Chen, J.; Cobley, C.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K.; Schwartz, A.; Wang, L.; Xia, Y., Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8 (12), 935-939, 2009.
49. Hirsch, L.R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R.E.; Hazel, J.D.; Halas, N.J.; West, J.L., Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. Proc. Natl. Acad. Sci. USA 100(23), 13549-13554, 2003.
50. (a) Wang, F.; Han, Y.; Lim, C.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature. 463 (7284), 1061-1065, 2010; (b) Li, L.-L.; Zhang, R.; Yin, L.; Zheng, K.; Qin, W.; Selvin, P.; Lu, Y., Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew. Chem. Int. Ed. 51 (25), 6121-6125, 2012.
51. Qian, H. S.; Zhang, Y., Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir. 24 (21), 12123-12125, 2008.
52. Li, Z. Q.; Zhang, Y.; Jiang, S., Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles. Adv. Mater. 21, 4765-4769, 2009.
53. Amiya P.; Niagara M. I.; Yong Z., Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging. J. Mater. Chem. 22, 960, 2012.
54. Hyejin N., Kyoungja W., Kipil L., Ho S. J., Rational morphology control of b-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an
additive, and lanthanide doping. Nanoscale. 5, 4242, 2013.
55. Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.-d.; You, L.-P.; Yan, C.-H., High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128 (19), 6426-6436, 2006.
56. Wang, G.; Qin, W.; Wang, L.; Wei, G.; Zhu, P.; Kim, R., Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. Opt. Express. 16 (16), 11907-11914, 2008.
57. Jianan L.; Yong L.; Wenbo B.; Jiwen B.; Yong S.; Jiulin D.; Jianlin S., Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation. J. Am. Chem. Soc. 136, 9701−9709, 2014.
58. Yun S.; Xingjun Z.; Juanjuan P.; Fuyou L., Core Shell Lanthanide Upconversion Nanophosphors as Four-Modal Probes for Tumor Angiogenesis Imaging. ACS Nano. 7(12), 11290-11300, 2013.
59. Fan Z.; Renchao C.; Xiaomin L.; Chi Y.; Jianping Y.; Dengke S.; Pan H.; Wei L.; Dongyuan Z., Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties. Nano Lett. 12, 2852−2858, 2012.