| 研究生: |
陳威廷 Chen, Wei-Ting |
|---|---|
| 論文名稱: |
氮化鋁於高導熱基板應用之微波燒結研究 Microwave Sintering of Aluminum Nitride for High Thermal Conductivity Substrate Applications |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 氮化鋁 、高導熱基板 、微波燒結 、電子陶瓷材料 |
| 外文關鍵詞: | Aluminum nitride, Substrate for high thermal conductivity, Microwave sintering, Electrical ceramic material |
| 相關次數: | 點閱:132 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於氮化鋁擁有良好電絕緣及高導熱性質,為電子基板應用上前景十分看好的材料。因微波具有加熱快速、不受熱導阻力限制及能源效率高等特性,過去的研究顯示以微波燒結陶瓷材料具有快速、省能源、高緻密及優異之微結構等優點。本論文延續本實驗室過去在微波燒結氮化鋁的研究,利用單膜腔微波燒結設備進行氮化鋁在基板應用之微波燒結之進一步研究。本論文探討於不同的燒結條件對燒結性質的影響,包括收縮率、相對密度、晶相組成、微結構、熱傳導等。所探討的燒結條件包括:不同的粉體來源(本實驗室合成及購自日本德山曹達)、不同的粒徑及氧含量、燒結助劑添加量、粉體表面改質及加入還原劑等。吾人同時探討不同的燒結助劑嘗試於低溫下(<1600。C),進行氮化鋁微波燒結之可行性。實驗結果發現,當起始之氮化鋁粉體粒徑越小、氧含量越低時,會得到越高之熱傳導值。以實驗室自製氮化鋁粉體(D50=2.2μm、氧含量=1.3wt%),添加5wt%氧化釔燒結助劑,於1830。C氮氣氣氛下微波燒結2小時後,試片熱傳導值可達到151W/mK。而藉由粉體表面改質及添加還原劑雖然可分別使氮化鋁產生抗水解能力及還原氧化鋁進而降低氧含量,但上述兩種方法皆會造成氧化釔殘留,降低試片緻密性及熱傳導係數。而若欲於低溫下進行微波燒結,添加低溫燒結助劑(Li2CO3、CaF2)有其必要性,可降低液相生成溫度,於較低溫下觸動液相燒結。但低溫燒結條件下所得氮化鋁試片相對密度及熱傳導係數並不高(約為60 W/mK),若能更進一步提高熱傳導值,勢必將會更有應用與發展性。
Aluminum nitride(AlN) is a promising material for electric substrate applications because of its good electric resistance and high thermal conductivity. The study revealed ceramic materials sintered by microwave possessed of good property including high-speed、energy saving、high relative density and excellent microstructure because microwave have a lot of merit inclusive of fast heating、no limit to thermal resistance and high energy efficiency. This paper continued the research in the lab for microwave sintering of Aluminum nitride, and sintered by using singe-mode microwave equipment. This paper discussed sintered property influenced by different sintering factor, including shrinkage、relative density、crystal phase composition、microstructure and thermal conductivity. This paper discussed sintering factor including different source of powder(synthesized from lab or from Tokuyama)、 different average particle size and content of oxygen、amount of sinterind aid、powder surface treatment and added redox. This paper also try to sinter at low temperature(<1600。C) by addind different sintering aid. The result discovered Aluminum nitride have higher thermal conductivity if powder have lowder average particle size and lower content of oxygen. By using Aluminum nitride powder from lab(D50=2.2μm、content of oxygen=1.3wt%) with 5wt% yttria, then microwave sintering at 1830。C under nitrogen atmosphere and sintered 2hr, the thermal conductivity can reach 151W/mk. Although Aluminum nitride had anti-hydrolysis ability by surface treatment and reduce content of oxygen by adding redox, both of above methods resulted in yittrium remaining, then reduced relative density and thermal conductivity. Adding low temperature sintering aid(Li2CO3、CaF2) is necessary, because it can produce liquid and sinter at low temperature. But both of relative density and thermal conductivity are not very good (60W/mK). If the thermal conductivity can increase much more, it will have more applicability in the future.
[1] G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, "The intrinsic thermal conductivity of AIN," Journal of Physics and Chemistry of Solids, vol. 48, pp. 641-647, 1987.
[2] T. J. Mroz, "ALUMINUM NITRIDE," American Ceramic Society Bulletin, vol. 71, pp. 782-&, May 1992.
[3] L. M. Sheppard, "ALUMINUM NITRIDE - A VERSATILE BUT CHALLENGING MATERIAL," American Ceramic Society Bulletin, vol. 69, pp. 1801-1812, Nov 1990.
[4] G. Selvaduray and L. Sheet, "ALUMINUM NITRIDE - REVIEW OF SYNTHESIS METHODS," Materials Science and Technology, vol. 9, pp. 463-473, Jun 1993.
[5] C. N. Lin and S. L. Chung, "Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II)," Journal of Materials Research, vol. 19, pp. 3037-3045, Oct 2004.
[6] Z. A. Munir, "SYNTHESIS OF HIGH-TEMPERATURE MATERIALS BY SELF-PROPAGATING COMBUSTION METHODS," American Ceramic Society Bulletin, vol. 67, pp. 342-349, Feb 1988.
[7] 劉如熹, 白色發光二極體製作技術-由晶粒金屬化製封裝: 全華圖書股份有限公司, 2008.
[8] 黃振東, 高導熱LED基板材料設計及發展: High Power LED材料技術趨勢研討會, 2007.8.9.
[9] F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, "HIGH THERMAL-CONDUCTIVITY ALUMINUM NITRIDE CERAMIC SUBSTRATES AND PACKAGES," Ieee Transactions on Components Hybrids and Manufacturing Technology, vol. 13, pp. 313-319, Jun 1990.
[10] 汪建民, 陶瓷技術手冊: 中華民國科技發展協進會, 1994.
[11] 黃昌偉, 陶瓷材料之熱性質分析: 精密陶瓷特性及檢測分析.
[12] D. K. K. W.J.Kim, and C.H.Kim, "Coating of Al2O3 Addictive on AlN Powder and Its Effect On the Thermal Conductivity of AlN Ceramics," Journal of Materials Synthesis and Processing, vol. 3, 1995.
[13] R.M.German, "Liquid Phase Sintering," Plenum,New York, 1985.
[14] K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, "Low-temperature sintering and high thermal conductivity of YLiO2-doped AIN ceramics," Journal of the American Ceramic Society, vol. 79, pp. 1979-1981, Jul 1996.
[15] J. H. Harris, "Sintered aluminum nitride ceramics for high-power electronic applications," Jom-Journal of the Minerals Metals & Materials Society, vol. 50, pp. 56-60, Jun 1998.
[16] K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, "Effective sintering aids for low-temperature sintering of AlN ceramics," Journal of Materials Research, vol. 14, pp. 1409-1417, Apr 1999.
[17] H. I. a. A. T. K.Komeya, Yogyo-Kyokai-Shi, vol. 89, p. 330, 1981.
[18] Y. Kurokawa, K. Utsumi, and H. Takamizawa, "DEVELOPMENT AND MICROSTRUCTURAL CHARACTERIZATION OF HIGH-THERMAL-CONDUCTIVITY ALUMINUM NITRIDE CERAMICS," Journal of the American Ceramic Society, vol. 71, pp. 588-594, Jul 1988.
[19] R. R. Lee, "DEVELOPMENT OF HIGH THERMAL-CONDUCTIVITY ALUMINUM NITRIDE CERAMIC," Journal of the American Ceramic Society, vol. 74, pp. 2242-2249, Sep 1991.
[20] T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie, and R. A. Cutler, "High-thermal-conductivity aluminum nitride ceramics: The effect of thermodynamic, kinetic, and microstructural factors," Journal of the American Ceramic Society, vol. 80, pp. 1421-1435, Jun 1997.
[21] A. M. H. Ying-Da Tu , Ragnvald Hoier,Rafal E.Dunin-Borkorkowski,Mari-Ann Einarsrud, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 22, 2002.
[22] K. I. K.Watari, T. Hamasaki and T. Fuyuki, Yogyo-Kyokai-Shi, vol. 96, p. 1066, 1988.
[23] T. B. Troczynski and P. S. Nicholson, "EFFECT OF ADDITIVES OF THE PRESSURELESS SINTERING OF ALUMINUM NITRIDE BETWEEN 1500-DEGREES AND 1800-DEGREES-C," Journal of the American Ceramic Society, vol. 72, pp. 1488-1491, Aug 1989.
[24] Y. T. M. W. Kim, C. H. Kim, D. K. Kim and H. Lee, J. Mater. Sci. lett., vol. 13, p. 1349, 1994.
[25] D. K. K. a. C. H. K. W. Kim, J. Mater. Syn. Proc., vol. 3, p. 39, 1995.
[26] C. Y. Hsieh, C. N. Lin, S. L. Chung, J. Cheng, and D. K. Agrawal, "Microwave sintering of AlN powder synthesized by a SHS method," Journal of the European Ceramic Society, vol. 27, pp. 343-350, 2007.
[27] M. B. A.Witec, A.Presz,M.Wroblewshi,S.Krukowski,W.Wlosinski,K.Jablonski, J.Mater. Sci., vol. 33, 1998.
[28] Y. C. T. Z.Y. Lu, Q.L. Liao, D.Li, J.Mater.Sci:Mater.Elect., vol. 16, 2005.
[29] H. A. M. X.L.Li, G.H.Zuo, W.Q.Liu, Y.J.Zheng, J.G.Li, S.S. Li and X.Jia, Scripta Materialia, vol. 56, 2007.
[30] H. T. N.Kuramoto, I.Aso, Adv.Ceram., vol. 26, 1989.
[31] H. Y. N.Hashimoto JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 75, 1992.
[32] Y. H. J.Y.Qiu, K.Watari, K.Mitsuishi, M.Yamazaki, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 26, 2006.
[33] Y. H. J.Y.Qiu, K.Watari, JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 89, 2006.
[34] 陳宏嘉, "燃燒合成法氮化鋁材料之傳統燒結與微波燒結研究," 成功大學化工系碩士論文, 2002.
[35] 林瑞明, "氮化鋁陶瓷材料之微波燒結與傳統燒結研究," 成功大學化工系碩士論文, 2003.
[36] E. T. Thostenson and T. W. Chou, "Microwave processing: fundamentals and applications," Composites Part a-Applied Science and Manufacturing, vol. 30, pp. 1055-1071, 1999.
[37] A. R. V. Hippel, Dielectric materials and applications: John Wiley and Sons.
[38] 劉岐山, 微波能應用: 電子工業出版社, 1990.
[39] J. Mijovic and J. Wijaya, "REVIEW OF CURE OF POLYMERS AND COMPOSITES BY MICROWAVE-ENERGY," Polymer Composites, vol. 11, pp. 184-191, Jun 1990.
[40] C. D.E., Ceram.Eng.Soc.Proc., vol. 14, 1993.
[41] R. G. a. J. A. Pierce, Foundations and industrial applications of microwave and radio frequency fields.: Wiely, 1980.
[42] M. Mizuno, S. Obata, S. Takayama, S. Ito, N. Kato, T. Hirai, et al., "Sintering of alumina by 2.45 GHz microwave heating," Journal of the European Ceramic Society, vol. 24, pp. 387-391, 2004.
[43] J. M. A. a. H.D.Kimrey, Mater.Res.Soc.Proc, vol. 189, p. 215, 1991.
[44] L. D.A., Mater.Res.Soc.Proc, vol. 269, p. 21, 1992.
[45] C. L. C. Janny M.A., and H.D. Kimrey, Ceram.Trans., vol. 21, p. 311, 1991.
[46] a. H. D. K. Janny M.A., Ceramic Powder Science.vol.II,American ceramic Society, vol. 919, 1988.
[47] I. A. J. H. S. Fathi Z., D.E.Clark, and A.R.Loading, Ceram.Trans., vol. 21, p. 623, 1991.
[48] R. F. C. Brooske J.H., I.Dobson, and L.McCaubban, Ceram.Trans., vol. 21, p. 185, 1991.
[49] J. H. B. Freeman S., R. F. Cooper, B. Meng, J. Kieffer, and B. J.Reardon., "Proceedings of the workshop on microwave-absorbing materials for accelerators.," Newport News, 1993.
[50] J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G. Dimitrakis, et al., "Evidence for the microwave effect during hybrid sintering," Journal of the American Ceramic Society, vol. 89, pp. 1977-1984, Jun 2006.
[51] P. B. Dunscombe, J. McLellan, and K. Malaker, "HEAT-PRODUCTION IN MICROWAVE-IRRADIATED THERMOCOUPLES," Medical Physics, vol. 13, pp. 457-461, Jul-Aug 1986.
[52] W. E. Olmstead and M. E. Brodwin, "A model for thermocouple sensitivity during microwave heating," International Journal of Heat and Mass Transfer, vol. 40, pp. 1559-1565, May 1997.
[53] J.-H. Pee, J.-C. Park, K.-T. Hwang, S. Kim, and W.-S. Cho, "Synthesis of an aluminum nitride–yttria (AlN–Y2O3) composite from nano-sized porous AlN and YCl3," Research on Chemical Intermediates, vol. 36, pp. 801-809, 2010.
[54] A. V. V. T.B.Jackson, K.L.More,R.B.Dinwiddie Jr., "<(YAM YAP YAG)High-thermal-conductivity aluminum nitride ceramics The effect of thermodynamic, kinetic, and microstructural factors.pdf>," Journal of American Ceramic Society, vol. 80, p. 1421, 1997.
[55] J. R. Johnson, "PHASE DIAGRAMS FOR CERAMISTS," Nuclear Science and Engineering, vol. 22, pp. 275-&, 1965.
[56] I. Ganesh, N. Thiyagarajan, G. Sundararajan, S. M. Olhero, and J. M. F. Ferreira, "A non-aqueous processing route for phosphate-protection of AlN powder against hydrolysis," Journal of the European Ceramic Society, vol. 28, pp. 2281-2288, 2008.
校內:2018-07-15公開