簡易檢索 / 詳目顯示

研究生: 陳威廷
Chen, Wei-Ting
論文名稱: 氮化鋁於高導熱基板應用之微波燒結研究
Microwave Sintering of Aluminum Nitride for High Thermal Conductivity Substrate Applications
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 164
中文關鍵詞: 氮化鋁高導熱基板微波燒結電子陶瓷材料
外文關鍵詞: Aluminum nitride, Substrate for high thermal conductivity, Microwave sintering, Electrical ceramic material
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氮化鋁擁有良好電絕緣及高導熱性質,為電子基板應用上前景十分看好的材料。因微波具有加熱快速、不受熱導阻力限制及能源效率高等特性,過去的研究顯示以微波燒結陶瓷材料具有快速、省能源、高緻密及優異之微結構等優點。本論文延續本實驗室過去在微波燒結氮化鋁的研究,利用單膜腔微波燒結設備進行氮化鋁在基板應用之微波燒結之進一步研究。本論文探討於不同的燒結條件對燒結性質的影響,包括收縮率、相對密度、晶相組成、微結構、熱傳導等。所探討的燒結條件包括:不同的粉體來源(本實驗室合成及購自日本德山曹達)、不同的粒徑及氧含量、燒結助劑添加量、粉體表面改質及加入還原劑等。吾人同時探討不同的燒結助劑嘗試於低溫下(<1600。C),進行氮化鋁微波燒結之可行性。實驗結果發現,當起始之氮化鋁粉體粒徑越小、氧含量越低時,會得到越高之熱傳導值。以實驗室自製氮化鋁粉體(D50=2.2μm、氧含量=1.3wt%),添加5wt%氧化釔燒結助劑,於1830。C氮氣氣氛下微波燒結2小時後,試片熱傳導值可達到151W/mK。而藉由粉體表面改質及添加還原劑雖然可分別使氮化鋁產生抗水解能力及還原氧化鋁進而降低氧含量,但上述兩種方法皆會造成氧化釔殘留,降低試片緻密性及熱傳導係數。而若欲於低溫下進行微波燒結,添加低溫燒結助劑(Li2CO3、CaF2)有其必要性,可降低液相生成溫度,於較低溫下觸動液相燒結。但低溫燒結條件下所得氮化鋁試片相對密度及熱傳導係數並不高(約為60 W/mK),若能更進一步提高熱傳導值,勢必將會更有應用與發展性。

    Aluminum nitride(AlN) is a promising material for electric substrate applications because of its good electric resistance and high thermal conductivity. The study revealed ceramic materials sintered by microwave possessed of good property including high-speed、energy saving、high relative density and excellent microstructure because microwave have a lot of merit inclusive of fast heating、no limit to thermal resistance and high energy efficiency. This paper continued the research in the lab for microwave sintering of Aluminum nitride, and sintered by using singe-mode microwave equipment. This paper discussed sintered property influenced by different sintering factor, including shrinkage、relative density、crystal phase composition、microstructure and thermal conductivity. This paper discussed sintering factor including different source of powder(synthesized from lab or from Tokuyama)、 different average particle size and content of oxygen、amount of sinterind aid、powder surface treatment and added redox. This paper also try to sinter at low temperature(<1600。C) by addind different sintering aid. The result discovered Aluminum nitride have higher thermal conductivity if powder have lowder average particle size and lower content of oxygen. By using Aluminum nitride powder from lab(D50=2.2μm、content of oxygen=1.3wt%) with 5wt% yttria, then microwave sintering at 1830。C under nitrogen atmosphere and sintered 2hr, the thermal conductivity can reach 151W/mk. Although Aluminum nitride had anti-hydrolysis ability by surface treatment and reduce content of oxygen by adding redox, both of above methods resulted in yittrium remaining, then reduced relative density and thermal conductivity. Adding low temperature sintering aid(Li2CO3、CaF2) is necessary, because it can produce liquid and sinter at low temperature. But both of relative density and thermal conductivity are not very good (60W/mK). If the thermal conductivity can increase much more, it will have more applicability in the future.

    摘要 I Abstrate III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XVI 第一章 緒論 1 1-1 氮化鋁簡介及應用 1 1-2 氮化鋁合成簡介 3 1-3 燃燒合成法簡介 6 1-4 LED陶瓷基板簡介 9 1-5微波燒結簡介 12 第二章 原理與文獻 13 2-1氮化鋁特性 13 2-2熱傳導機構 15 2-3何謂燒結 17 2-4液相燒結 18 2-5液相燒結助劑的選擇 20 2-6燒結助劑文獻回顧 24 2-7微波加熱 30 2-7-1微波簡介 30 2-7-2微波加熱原理 31 2-7-3微波設備介紹 36 2-7-4微波加熱優點 41 2-7-5微波效應 43 2-8測溫原理 44 第三章 使用藥品與實驗設備及分析儀器 48 3-1藥品 48 3-2實驗設備與分析儀器 49 3-2-1實驗設備 49 3-2-2分析儀器 52 3-3儀器分析元理與量測方法 52 第四章 實驗方法 61 4-1實驗步驟簡述 61 4-2氮化鋁研磨 62 4-3調配反應物 63 4-4生胚成型 64 4-5去除黏結劑(脫酯) 64 4-6微波燒結 65 4-7實驗溫度量測 65 第五章 結果與討論 68 5-1燒結助劑添加量之影響 68 5-1-1實驗條件 68 5-1-2燒結試片的緻密性 70 5-1-3試片晶相組成分析 72 5-1-4微結構分析 76 5-1-5熱傳導分析 81 5-2平均粒徑及氧含量的影響 82 5-2-1前言 82 5-2-2實驗條件 83 5-2-3燒結試片的緻密性 88 5-2-4試片晶相組成分析 91 5-2-5微結構分析 97 5-2-6熱傳導分析 106 5-3研磨中表面改質對熱傳導的影響 110 5-3-1前言 110 5-3-2磷酸改質簡介 110 5-3-3起始氮化鋁粉體規格 112 5-3-4水解測試 113 5-3-5燒結試片的緻密性 115 5-3-6試片晶相組成及鍵結分析 117 5-3-7試片微結構分析 121 5-3-8熱傳導分析 125 5-4還原氣氛燒結對熱傳導影響 128 5-4-1前言 128 5-4-2實驗條件 128 5-4-3燒結試片的緻密性 130 5-4-4晶相組成分析 132 5-4-5試片微結構分析 135 5-4-6熱傳導分析 140 5-5低溫微波燒結研究與探討 144 5-5-1前言 144 5-5-2低溫燒結助劑介紹與選擇 144 5-5-3實驗條件 146 5-5-4燒結試片的緻密性 148 5-5-5晶相組成分析 150 5-5-6試片熱傳導分析 154 第六章 結論 157 第七章 參考文獻 159

    [1] G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, "The intrinsic thermal conductivity of AIN," Journal of Physics and Chemistry of Solids, vol. 48, pp. 641-647, 1987.
    [2] T. J. Mroz, "ALUMINUM NITRIDE," American Ceramic Society Bulletin, vol. 71, pp. 782-&, May 1992.
    [3] L. M. Sheppard, "ALUMINUM NITRIDE - A VERSATILE BUT CHALLENGING MATERIAL," American Ceramic Society Bulletin, vol. 69, pp. 1801-1812, Nov 1990.
    [4] G. Selvaduray and L. Sheet, "ALUMINUM NITRIDE - REVIEW OF SYNTHESIS METHODS," Materials Science and Technology, vol. 9, pp. 463-473, Jun 1993.
    [5] C. N. Lin and S. L. Chung, "Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II)," Journal of Materials Research, vol. 19, pp. 3037-3045, Oct 2004.
    [6] Z. A. Munir, "SYNTHESIS OF HIGH-TEMPERATURE MATERIALS BY SELF-PROPAGATING COMBUSTION METHODS," American Ceramic Society Bulletin, vol. 67, pp. 342-349, Feb 1988.
    [7] 劉如熹, 白色發光二極體製作技術-由晶粒金屬化製封裝: 全華圖書股份有限公司, 2008.
    [8] 黃振東, 高導熱LED基板材料設計及發展: High Power LED材料技術趨勢研討會, 2007.8.9.
    [9] F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, "HIGH THERMAL-CONDUCTIVITY ALUMINUM NITRIDE CERAMIC SUBSTRATES AND PACKAGES," Ieee Transactions on Components Hybrids and Manufacturing Technology, vol. 13, pp. 313-319, Jun 1990.
    [10] 汪建民, 陶瓷技術手冊: 中華民國科技發展協進會, 1994.
    [11] 黃昌偉, 陶瓷材料之熱性質分析: 精密陶瓷特性及檢測分析.
    [12] D. K. K. W.J.Kim, and C.H.Kim, "Coating of Al2O3 Addictive on AlN Powder and Its Effect On the Thermal Conductivity of AlN Ceramics," Journal of Materials Synthesis and Processing, vol. 3, 1995.
    [13] R.M.German, "Liquid Phase Sintering," Plenum,New York, 1985.
    [14] K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, "Low-temperature sintering and high thermal conductivity of YLiO2-doped AIN ceramics," Journal of the American Ceramic Society, vol. 79, pp. 1979-1981, Jul 1996.
    [15] J. H. Harris, "Sintered aluminum nitride ceramics for high-power electronic applications," Jom-Journal of the Minerals Metals & Materials Society, vol. 50, pp. 56-60, Jun 1998.
    [16] K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, "Effective sintering aids for low-temperature sintering of AlN ceramics," Journal of Materials Research, vol. 14, pp. 1409-1417, Apr 1999.
    [17] H. I. a. A. T. K.Komeya, Yogyo-Kyokai-Shi, vol. 89, p. 330, 1981.
    [18] Y. Kurokawa, K. Utsumi, and H. Takamizawa, "DEVELOPMENT AND MICROSTRUCTURAL CHARACTERIZATION OF HIGH-THERMAL-CONDUCTIVITY ALUMINUM NITRIDE CERAMICS," Journal of the American Ceramic Society, vol. 71, pp. 588-594, Jul 1988.
    [19] R. R. Lee, "DEVELOPMENT OF HIGH THERMAL-CONDUCTIVITY ALUMINUM NITRIDE CERAMIC," Journal of the American Ceramic Society, vol. 74, pp. 2242-2249, Sep 1991.
    [20] T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie, and R. A. Cutler, "High-thermal-conductivity aluminum nitride ceramics: The effect of thermodynamic, kinetic, and microstructural factors," Journal of the American Ceramic Society, vol. 80, pp. 1421-1435, Jun 1997.
    [21] A. M. H. Ying-Da Tu , Ragnvald Hoier,Rafal E.Dunin-Borkorkowski,Mari-Ann Einarsrud, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 22, 2002.
    [22] K. I. K.Watari, T. Hamasaki and T. Fuyuki, Yogyo-Kyokai-Shi, vol. 96, p. 1066, 1988.
    [23] T. B. Troczynski and P. S. Nicholson, "EFFECT OF ADDITIVES OF THE PRESSURELESS SINTERING OF ALUMINUM NITRIDE BETWEEN 1500-DEGREES AND 1800-DEGREES-C," Journal of the American Ceramic Society, vol. 72, pp. 1488-1491, Aug 1989.
    [24] Y. T. M. W. Kim, C. H. Kim, D. K. Kim and H. Lee, J. Mater. Sci. lett., vol. 13, p. 1349, 1994.
    [25] D. K. K. a. C. H. K. W. Kim, J. Mater. Syn. Proc., vol. 3, p. 39, 1995.
    [26] C. Y. Hsieh, C. N. Lin, S. L. Chung, J. Cheng, and D. K. Agrawal, "Microwave sintering of AlN powder synthesized by a SHS method," Journal of the European Ceramic Society, vol. 27, pp. 343-350, 2007.
    [27] M. B. A.Witec, A.Presz,M.Wroblewshi,S.Krukowski,W.Wlosinski,K.Jablonski, J.Mater. Sci., vol. 33, 1998.
    [28] Y. C. T. Z.Y. Lu, Q.L. Liao, D.Li, J.Mater.Sci:Mater.Elect., vol. 16, 2005.
    [29] H. A. M. X.L.Li, G.H.Zuo, W.Q.Liu, Y.J.Zheng, J.G.Li, S.S. Li and X.Jia, Scripta Materialia, vol. 56, 2007.
    [30] H. T. N.Kuramoto, I.Aso, Adv.Ceram., vol. 26, 1989.
    [31] H. Y. N.Hashimoto JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 75, 1992.
    [32] Y. H. J.Y.Qiu, K.Watari, K.Mitsuishi, M.Yamazaki, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 26, 2006.
    [33] Y. H. J.Y.Qiu, K.Watari, JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 89, 2006.
    [34] 陳宏嘉, "燃燒合成法氮化鋁材料之傳統燒結與微波燒結研究," 成功大學化工系碩士論文, 2002.
    [35] 林瑞明, "氮化鋁陶瓷材料之微波燒結與傳統燒結研究," 成功大學化工系碩士論文, 2003.
    [36] E. T. Thostenson and T. W. Chou, "Microwave processing: fundamentals and applications," Composites Part a-Applied Science and Manufacturing, vol. 30, pp. 1055-1071, 1999.
    [37] A. R. V. Hippel, Dielectric materials and applications: John Wiley and Sons.
    [38] 劉岐山, 微波能應用: 電子工業出版社, 1990.
    [39] J. Mijovic and J. Wijaya, "REVIEW OF CURE OF POLYMERS AND COMPOSITES BY MICROWAVE-ENERGY," Polymer Composites, vol. 11, pp. 184-191, Jun 1990.
    [40] C. D.E., Ceram.Eng.Soc.Proc., vol. 14, 1993.
    [41] R. G. a. J. A. Pierce, Foundations and industrial applications of microwave and radio frequency fields.: Wiely, 1980.
    [42] M. Mizuno, S. Obata, S. Takayama, S. Ito, N. Kato, T. Hirai, et al., "Sintering of alumina by 2.45 GHz microwave heating," Journal of the European Ceramic Society, vol. 24, pp. 387-391, 2004.
    [43] J. M. A. a. H.D.Kimrey, Mater.Res.Soc.Proc, vol. 189, p. 215, 1991.
    [44] L. D.A., Mater.Res.Soc.Proc, vol. 269, p. 21, 1992.
    [45] C. L. C. Janny M.A., and H.D. Kimrey, Ceram.Trans., vol. 21, p. 311, 1991.
    [46] a. H. D. K. Janny M.A., Ceramic Powder Science.vol.II,American ceramic Society, vol. 919, 1988.
    [47] I. A. J. H. S. Fathi Z., D.E.Clark, and A.R.Loading, Ceram.Trans., vol. 21, p. 623, 1991.
    [48] R. F. C. Brooske J.H., I.Dobson, and L.McCaubban, Ceram.Trans., vol. 21, p. 185, 1991.
    [49] J. H. B. Freeman S., R. F. Cooper, B. Meng, J. Kieffer, and B. J.Reardon., "Proceedings of the workshop on microwave-absorbing materials for accelerators.," Newport News, 1993.
    [50] J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G. Dimitrakis, et al., "Evidence for the microwave effect during hybrid sintering," Journal of the American Ceramic Society, vol. 89, pp. 1977-1984, Jun 2006.
    [51] P. B. Dunscombe, J. McLellan, and K. Malaker, "HEAT-PRODUCTION IN MICROWAVE-IRRADIATED THERMOCOUPLES," Medical Physics, vol. 13, pp. 457-461, Jul-Aug 1986.
    [52] W. E. Olmstead and M. E. Brodwin, "A model for thermocouple sensitivity during microwave heating," International Journal of Heat and Mass Transfer, vol. 40, pp. 1559-1565, May 1997.
    [53] J.-H. Pee, J.-C. Park, K.-T. Hwang, S. Kim, and W.-S. Cho, "Synthesis of an aluminum nitride–yttria (AlN–Y2O3) composite from nano-sized porous AlN and YCl3," Research on Chemical Intermediates, vol. 36, pp. 801-809, 2010.
    [54] A. V. V. T.B.Jackson, K.L.More,R.B.Dinwiddie Jr., "<(YAM YAP YAG)High-thermal-conductivity aluminum nitride ceramics The effect of thermodynamic, kinetic, and microstructural factors.pdf>," Journal of American Ceramic Society, vol. 80, p. 1421, 1997.
    [55] J. R. Johnson, "PHASE DIAGRAMS FOR CERAMISTS," Nuclear Science and Engineering, vol. 22, pp. 275-&, 1965.
    [56] I. Ganesh, N. Thiyagarajan, G. Sundararajan, S. M. Olhero, and J. M. F. Ferreira, "A non-aqueous processing route for phosphate-protection of AlN powder against hydrolysis," Journal of the European Ceramic Society, vol. 28, pp. 2281-2288, 2008.

    無法下載圖示 校內:2018-07-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE