簡易檢索 / 詳目顯示

研究生: 黃彥霖
Huang, Yan-Lin
論文名稱: 步進馬達扭矩控制方法之研究
Study on the Torque Control Methods of Stepper Motors
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 168
中文關鍵詞: 步進馬達串聯彈性致動器無感測器扭矩控制摩擦補償阻抗控制
外文關鍵詞: Stepper motor, Series elastic actuator, sensorless torque control, impedance control, friction compensation, harmonic drive
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了使機器人在與環境或人的互動過程中能提供較高的安全性,致動器需具備高度順應性運動以及力量感測的功能,因此本文開發一使用步進馬達之旋轉串聯彈性致動器,以達成順逆向驅動等順應性運動之需求。串聯彈性致動器透過驅動源與彈簧等撓性元件的結合,藉由量測並控制彈簧變形量間接控制輸出至機構輸出端的力量,相較於剛性致動器能達到更高準確度的輸出扭矩與阻抗控制,因此更加適用於人機互動領域。除了串聯彈性致動器外,由於馬達電流與輸出扭矩間存在關係,因此本文提出步進馬達之無感測器扭矩控制方法,透過量測馬達電流估測端效器外力,達到力量感測與控制功能。
    目前關於串聯彈性致動器或應用電流感測於扭矩控制的研究大多使用直流有刷或無刷馬達作為驅動源,步進馬達的優勢尚未探索利用。相較於其他電磁馬達,步進馬達具備高可靠度且相對便宜,亦有更高的扭矩重量比及扭矩轉子慣量比。本文選用步進馬達作為驅動源並建立步進馬達數學模型,接著以具備高迴圈速度與運算能力之嵌入式控制器NI CompactRIO®,設計驅動與感測電路以進行馬達回授控制。為了比較旋轉串聯彈性致動器與電流感測回授控制的性能表現,首先設計旋轉串聯彈性致動器並進行彈簧勁度校正,接著建立電流感測回授控制的模型並校正電流感測器係數,由於系統受減速機構摩擦力影響,因此建立摩擦補償模型,透過實驗鑑別模型中的各項參數。分別針對兩種致動器建立扭矩控制器與阻抗控制器等控制架構,並完整分析系統之穩定性,同時利用商用軟體MATLAB®中的Simulink®建立模擬模型,比較實驗與模擬的結果以驗證本文建模的正確性。透過撰寫程式將控制架構實現於實驗平台中,進行順逆向驅動實驗達成本文期望之功能,最後比較兩種致動器各自的優勢。

    Actuators that can produce controllable compliant output motion are suitable for robots that need to interact safely with humans or the environment. To obtain the accurate output torque required to control the compliant motion, the conventional rigid actuators use torque sensor to measure the interaction force of the end effector. However, the rigid actuators are low backdrivable and require extra space to accommodate the torque sensor and its related bridge circuit. In contrast to the rigid actuators, the series elastic actuators (SEA) are highly backdrivable and provide more accurate torque control. By adding an elastic spring between electromagnetic motor and the output and then measuring the deformation of the spring using encoders, the actuator torque can be indirectly obtained and controlled. Aside from SEAs, sensorless torque control method is another option to generate compliant motion. For DC motors, the magnitude of motor current is proportional to the motor output torque and thus to estimate output torque. This paper compares the performance of the rotary SEA and the sensorless torque control method of stepper motors to achieve the forward and inverse torque/impedance tracking control. Stepper motors are used because of their high availability and reliability. They also have a much higher torque-to-weight ratio and torque-to-rotor-inertia ratio than other DC motors. It is expected that the result here can present the merits of the respective torque control method in compliant motion control.

    摘要 I English Abstract II 致謝 XV 目錄 XVI 表目錄 XX 圖目錄 XXIII 符號說明 XXXIV 第一章 緒論 1 1.1 背景介紹 1 1.2 文獻回顧 3 1.2.1 串聯彈性致動器文獻回顧 3 1.2.2 電流感測文獻回顧 6 1.2.3 摩擦補償文獻回顧 10 1.3 動機與目標 12 1.4 論文架構 12 第二章 旋轉串聯彈性致動器控制與建模 14 2.1 前言 14 2.2 旋轉串聯彈性致動器原型設計改善 14 2.2.1 旋轉串聯彈性致動器原型設計 14 2.2.2 減速箱選用 16 2.2.3 彈簧設計及分析 18 2.2.4 改良型旋轉串聯彈性致動器設計與改善結果 21 2.3 旋轉串聯彈性致動器驅動方式 26 2.3.1 軟硬體配置 26 2.3.2 馬達數學模型 28 2.3.3 交軸驅動法 31 2.3.4 馬達驅動電路 34 2.4 旋轉串聯彈性致動器模型建立 36 2.4.1 時域模型 36 2.4.2 頻域模型 38 2.5 本章小結 39 第三章 扭矩控制 41 3.1 前言 41 3.2 扭矩控制器模型建立 41 3.2.1 扭矩控制模型 41 3.2.2 扭矩控制器穩定性分析 44 3.2.3 扭矩控制系統鑑別 44 3.2.4 扭矩控制模擬模型建立與實驗結果 48 3.3 應用電流回授於扭矩控制 52 3.3.1 電流感測電路與校正 53 3.3.2 步進馬達輸出扭矩與電流變化關係 57 3.3.3 電流回授扭矩控制模型建立 60 3.3.4 電流回授扭矩控制器穩定性分析 63 3.4 電流回授扭矩控制實驗驗證 64 3.4.1 扭矩常數校正 64 3.4.2 電流回授扭矩控制模擬模型建立 67 3.4.3 步階響應實驗 68 3.4.4 弦波響應實驗 77 3.4.5 調頻響應實驗 79 3.5 本章小結 85 第四章 阻抗控制 86 4.1 前言 86 4.2 旋轉串聯彈性致動器式阻抗控制器性能分析 86 4.2.1 旋轉串聯彈性致動器式阻抗控制模型建立 86 4.2.2 旋轉串聯彈性致動器式阻抗控制穩定性分析 88 4.2.3 旋轉串聯彈性致動器式阻抗控制模擬模型 92 4.3 旋轉串聯彈性致動器式阻抗控制器實驗驗證 96 4.3.1 旋轉串聯彈性致動器之順向驅動位置控制實驗 96 4.3.2 旋轉串聯彈性致動器之零阻抗控制實驗 100 4.3.3 旋轉串聯彈性致動器之虛擬勁度控制實驗 106 4.4 電流回授致動器式阻抗控制器 108 4.4.1 電流回授致動器式阻抗模型建立 108 4.4.2 電流回授致動器式阻抗控制穩定性分析 110 4.4.3 電流回授致動器式阻抗控制模擬架構 113 4.4.4 電流回授致動器式零阻抗控制實驗 115 4.5 電流回授致動器式阻抗控制器之摩擦補償 118 4.5.1 電流回授致動器式阻抗控制器之摩擦補償模型建立 118 4.5.2 電流回授致動器式阻抗控制器之摩擦補償穩定性分析 124 4.5.3 電流回授致動器式阻抗控制器之摩擦補償參數鑑別實驗 128 4.5.4 電流回授致動器式阻抗控制器之摩擦補償零阻抗控制實驗 139 4.5.5 電流回授致動器之順向驅動位置控制實驗 142 4.5.6 電流回授致動器之虛擬勁度控制實驗 148 4.6 本章小結 153 第五章 結論與未來工作 155 5.1 結論 155 5.2 未來工作 157 參考文獻 159

    [1] Zhang, S., Wang, S., Jing, F., & Tan, M. (2019). A sensorless hand guiding scheme based on model identification and control for industrial robot. IEEE Transactions on Industrial Informatics, 15(9), 5204-5213.
    [2] Park, H., Park, J., Lee, D. H., Park, J. H., Baeg, M. H., & Bae, J. H. (2017). Compliance-based robotic peg-in-hole assembly strategy without force feedback. IEEE Transactions on Industrial Electronics, 64(8), 6299-6309.
    [3] Katsura, S., Irie, K., & Ohishi, K. (2008). Wideband force control by position-acceleration integrated disturbance observer. IEEE Transactions on Industrial Electronics, 55(4), 1699-1706.
    [4] Min, J. K., Ahn, K. H., Park, H. C., & Song, J. B. (2019). A novel reactive-type joint torque sensor with high torsional stiffness for robot applications. Mechatronics, 63, 102265.
    [5] Hsieh, H. C., Chen, D. F., Chien, L., & Lan, C. C. (2017). Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder rehabilitation. IEEE/ASME Transactions on Mechatronics, 22(5), 2034-2045.
    [6] Park, Y., Paine, N., & Oh, S. (2017). Development of force observer in series elastic actuator for dynamic control. IEEE Transactions on Industrial Electronics, 65(3), 2398-2407.
    [7] Sariyildiz, E., Chen, G., & Yu, H. (2015). An acceleration-based robust motion controller design for a novel series elastic actuator. IEEE Transactions on Industrial Electronics, 63(3), 1900-1910.
    [8] Yu, Y. L., & Lan, C. C. (2019). Design of a miniature series elastic actuator for bilateral teleoperations requiring accurate torque sensing and control. IEEE Robotics and Automation Letters, 4(2), 500-507.
    [9] Pratt, J., Krupp, B., & Morse, C. (2002). Series elastic actuators for high fidelity force control. Industrial Robot: An International Journal.
    [10] Su, Y. Y., Yu, Y. L., Lin, C. H., & Lan, C. C. (2019). A compact wrist rehabilitation robot with accurate force/stiffness control and misalignment adaptation. International Journal of Intelligent Robotics and Applications, 3(1), 45-58.
    [11] Wu, K. Y., Su, Y. Y., Yu, Y. L., Lin, C. H., & Lan, C. C. (2019). A 5-Degrees-of-Freedom Lightweight Elbow-Wrist Exoskeleton for Forearm Fine-Motion Rehabilitation. IEEE/ASME Transactions on Mechatronics, 24(6), 2684-2695.
    [12] Lee, Y. F., Chu, C. Y., Xu, J. Y., & Lan, C. C. (2016). A humanoid robotic wrist with two-dimensional series elastic actuation for accurate force/torque interaction. IEEE/ASME Transactions on Mechatronics, 21(3), 1315-1325.
    [13] Lee, Y. S., & Lan, C. C. (2020, July). Rendering of Arbitrary and Stable Stiffness Using a Series Elastic Actuator. In 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 960-965). IEEE.
    [14] Huard, B., Grossard, M., Moreau, S., & Poinot, T. (2014). Sensorless force/position control of a single-acting actuator applied to compliant object interaction. IEEE Transactions on Industrial Electronics, 62(6), 3651-3661.
    [15] Lee, S. D., Ahn, K. H., & Song, J. B. (2016, October). Torque control based sensorless hand guiding for direct robot teaching. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 745-750). IEEE.
    [16] Nagamatsu, Y., Shirai, T., Suzuki, H., Kakiuchi, Y., Okada, K., & Inaba, M. (2017, September). Distributed torque estimation toward low-latency variable stiffness control for gear-driven torque sensorless humanoid. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5239-5244). IEEE.
    [17] Jin, B., Sun, C., Zhang, A., Ding, N., Lin, J., Deng, G., ... & Sun, Z. (2019, November). Joint Torque Estimation toward Dynamic and Compliant Control for Gear-Driven Torque Sensorless Quadruped Robot. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4630-4637). IEEE.
    [18] Zhao, B. and Nelson, C.A., 2019. A sensorless force-feedback system for robot-assisted laparoscopic surgery. Computer Assisted Surgery, 24(sup1), pp.36-43.
    [19] 林奎佑 (2019)。「使用步進馬達於直線串聯彈性致動器的準確力量及阻抗控制」,成功大學機械工程學系碩士學位論文。
    [20] Pratt, G. A., & Williamson, M. M. (1995, August). Series elastic actuators. In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (Vol. 1, pp. 399-406). IEEE.
    [21] Robinson, D. W., Pratt, J. E., Paluska, D. J., & Pratt, G. A. (1999, September). Series elastic actuator development for a biomimetic walking robot. In 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 99TH8399) (pp. 561-568). IEEE.
    [22] Paine, N., Mehling, J. S., Holley, J., Radford, N. A., Johnson, G., Fok, C. L., & Sentis, L. (2015). Actuator control for the NASA‐JSC valkyrie humanoid robot: A decoupled dynamics approach for torque control of series elastic robots. Journal of field robotics, 32(3), 378-396.
    [23] Zibafar, A., Ghaffari, S., & Vossoughi, G. (2016, October). Achieving transparency in series elastic actuator of sharif lower limb exoskeleton using LLNF-NARX model. In 2016 4th International Conference on Robotics and Mechatronics (ICROM) (pp. 398-403). IEEE.
    [24] Roozing, W., Malzahn, J., Caldwell, D. G., & Tsagarakis, N. G. (2016, October). Comparison of open-loop and closed-loop disturbance observers for series elastic actuators. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3842-3847). IEEE.
    [25] Pratt, G. A., Williamson, M. M., Dillworth, P., Pratt, J., & Wright, A. (1997). Stiffness isn't everything. In experimental robotics IV (pp. 253-262). Springer, Berlin, Heidelberg.
    [26] Lu, J., Haninger, K., Chen, W., & Tomizuka, M. (2015, July). Design and torque-mode control of a cable-driven rotary series elastic actuator for subject-robot interaction. In 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 158-164). IEEE.
    [27] 尤應龍 (2018)。「開發微型串聯彈性致動器於遠端操作機器人的精準力感知與控制」,成功大學機械工程學系碩士學位論文。
    [28] Kong, K., Bae, J., & Tomizuka, M. (2009). Control of rotary series elastic actuator for ideal force-mode actuation in human–robot interaction applications. IEEE/ASME transactions on mechatronics, 14(1), 105-118.
    [29] Vitiello, N., Lenzi, T., Roccella, S., De Rossi, S. M. M., Cattin, E., Giovacchini, F., ... & Carrozza, M. C. (2012). NEUROExos: A powered elbow exoskeleton for physical rehabilitation. IEEE Transactions on Robotics, 29(1), 220-235.
    [30] Knabe, C., Lee, B., Orekhov, V., & Hong, D. (2014, August). Design of a compact, lightweight, electromechanical linear series elastic actuator. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V05BT08A014-V05BT08A014). American Society of Mechanical Engineers.
    [31] Wang, S., Wang, L., Meijneke, C., Van Asseldonk, E., Hoellinger, T., Cheron, G., ... & Tamburella, F. (2014). Design and control of the MINDWALKER exoskeleton. IEEE transactions on neural systems and rehabilitation engineering, 23(2), 277-286.
    [32] Yu, H., Huang, S., Chen, G., Pan, Y., & Guo, Z. (2015). Human–robot interaction control of rehabilitation robots with series elastic actuators. IEEE Transactions on Robotics, 31(5), 1089-1100.
    [33] Zribi, M., Sira-Ramirez, H., & Ngai, A. (2001). Static and dynamic sliding mode control schemes for a permanent magnet stepper motor. International Journal of control, 74(2), 103-117.
    [34] Delpoux, R., Bodson, M., & Floquet, T. (2014). Parameter estimation of permanent magnet stepper motors without mechanical sensors. Control Engineering Practice, 26, 178-187.
    [35] Quigley, M., Asbeck, A., & Ng, A. (2011, May). A low-cost compliant 7-DOF robotic manipulator. In 2011 IEEE International Conference on Robotics and Automation (pp. 6051-6058). IEEE.
    [36] Geravand, M., Flacco, F., & De Luca, A. (2013, May). Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture. In 2013 IEEE International Conference on Robotics and Automation (pp. 4000-4007). IEEE.
    [37] Mariotti, E., Magrini, E., & De Luca, A. (2019, May). Admittance Control for Human-Robot Interaction Using an Industrial Robot Equipped with a F/T Sensor. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 6130-6136). IEEE.
    [38] Huard, B., Grossard, M., Moreau, S., & Poinot, T. (2013). Position estimation and object collision detection of a tendon-driven actuator based on a polytopic observer synthesis. Control Engineering Practice, 21(9), 1178-1187.
    [39] Yu, F., Murakami, T., & Ohnishi, K. (1992, May). Sensorless force control of direct drive manipulator. In [1992] Proceedings of the IEEE International Symposium on Industrial Electronics (pp. 311-315). IEEE.
    [40] Le, N. Q., & Jeon, J. W. (2007, October). An open-loop stepper motor driver based on FPGA. In 2007 International Conference on Control, Automation and Systems (pp. 1322-1326). IEEE.
    [41] Bodson, M., Chiasson, J. N., Novotnak, R. T., & Rekowski, R. B. (1993). High-performance nonlinear feedback control of a permanent magnet stepper motor. IEEE Transactions on Control Systems Technology, 1(1), 5-14.
    [42] Le, K. M., Van Hoang, H., & Jeon, J. W. (2016). An advanced closed-loop control to improve the performance of hybrid stepper motors. IEEE Transactions on Power Electronics, 32(9), 7244-7255.
    [43] Oriental motor USA Corp, Inc., ”EH系列” Available: https://www.orientalmotor.com.tw/products/limo/slider_eh_f/ [Accessed: September 1, 2020]
    [44] Tarng, Y. S., & Cheng, H. E. (1995). An investigation of stick-slip friction on the contouring accuracy of CNC machine tools. International Journal of Machine Tools and Manufacture, 35(4), 565-576.
    [45] Umeno, T., & Hori, Y. (1991). Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Transactions on industrial electronics, 38(5), 363-368.
    [46] Endo, S., Kobayashi, H., Kempf, C. J., Kobayashi, S., Tomizuka, M., & Hori, Y. (1996). Robust digital tracking controller design for high-speed positioning systems. Control Engineering Practice, 4(4), 527-536.
    [47] 郭奕玲、沈慧君,1996,物理學講義,凡異出版社,台灣
    [48] Armstrong, B. (1988, April). Friction: Experimental determination, modeling and compensation. In Proceedings. 1988 IEEE International Conference on Robotics and Automation (pp. 1422-1427). IEEE.
    [49] Haessig Jr, D. A., & Friedland, B. (1991). On the modeling and simulation of friction. ASME Journal of Dynamic System, Measurement, and Control, pp. 113,1991.
    [50] De Wit, C. C., Olsson, H., Astrom, K. J., & Lischinsky, P. (1995). A new model for control of systems with friction. IEEE Transactions on automatic control, 40(3), 419-425.
    [51] Walrath, C. D. (1984). Adaptive bearing friction compensation based on recent knowledge of dynamic friction. Automatica, 20(6), 717-727.
    [52] Armstrong-Hélouvry, B., Dupont, P., & De Wit, C. C. (1994). A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 30(7), 1083-1138.
    [53] De Wit, C. C., & Seront, V. (1990, May). Robust adaptive friction compensation. In Proceedings., IEEE International Conference on Robotics and Automation (pp. 1383-1388). IEEE.
    [54] Lee, T. H., Tan, K. K., & Huang, S. (2010). Adaptive friction compensation with a dynamical friction model. IEEE/ASME transactions on mechatronics, 16(1), 133-140.
    [55] Lampaert, V., Swevers, J., & Al-Bender, F. (2004, June). Comparison of model and non-model based friction compensation techniques in the neighbourhood of pre-sliding friction. In Proceedings of the 2004 American Control Conference (Vol. 2, pp. 1121-1126). IEEE.
    [56] Dombre, E., Duchemin, G., Poignet, P., & Pierrot, F. (2003). Dermarob: A safe robot for reconstructive surgery. IEEE Transactions on Robotics and Automation, 19(5), 876-884.
    [57] Newshiki Enterprise Co., Ltd., “Harmonic Drive 諧波減速機 / 諧和式減速機/精密控制用綜合型錄” Available: https://www.newshiki.com.tw/%e5%9e%8b%e9%8c%84%e4%b8%8b%e8%bc%89/ [Accessed: September 1, 2020]
    [58] Lan, C. C., & Cheng, Y. J. (2008). Distributed shape optimization of compliant mechanisms using intrinsic functions. Journal of Mechanical Design, 130(7).
    [59] Lan, C. C., & Lee, K. M. (2006). Generalized shooting method for analyzing compliant mechanisms with curved members. Journal of Mechanical Design 128.4 (2006): 765-775.
    [60] National Instruments, “C系列電壓輸入模組/型號: NI-9215” Available: https://www.ni.com/zh-tw/shop/hardware/products/c-series-voltage-input-module.html?modelId=122167 [Accessed: September 1, 2020]
    [61] Linear Motion Tips, “How does the number of stator phases affect stepper motor performance?” Available: https://www.linearmotiontips.com/how-does-the-number-of-stator-phases-affect-stepper-motor-performance/ [Accessed: September 1, 2020]
    [62] 徐嘉佑(2013)。具兩共置撓性驅動軸機器手腕之動力與控制。碩士論文。國立成功大學機械工程學系。台南市,台灣。
    [63] Oriental motor USA Corp, Inc., ”2相步進馬達PKP系列/PK系列PKP214D06A−R2EL” Available: https://www.orientalmotor.com.tw/products/st/list/detail/?brand_tdl_code=ST&product_name=PKP214D06A-R2EL [Accessed: September 1, 2020]
    [64] Ohmae, T., Matsuda, T., Kamiyama, K., & Tachikawa, M. (1982). A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives. IEEE Transactions on Industrial Electronics, (3), 207-211.
    [65] Tsuji, T., Hashimoto, T., Kobayashi, H., Mizuochi, M., & Ohnishi, K. (2008). A wide-range velocity measurement method for motion control. IEEE Transactions on industrial electronics, 56(2), 510-519.
    [66] Texas Instruments, Inc (1995). “OPA548 - high-voltage, high-current, wide-output-voltage-swing power operational amplfier [Online products catalog].” Retrieved from http://www.ti.com/product/OPA548?keyMatch=OPA548&tisearch=Search-ENEverything
    [67] 許登傑、陳文瑞、麥朝創與蔡孟勳 (2017)。「系統頻譜分析於工具機上的應用」,機械工業雜誌。
    [68] 吳冠毅 (2018)。「肘外甲機器之串聯彈性致動機構與驅動控制器設計」,成功大學機械工程學系碩士學位論文。
    [69] Allegro MicroSystems, LLC. “ACS712: Fully Integrated, Hall-Effect-Based Linear Current Sensor IC with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor” Available: https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs712 [Accessed: September 1, 2020]
    [70] Allegro MicroSystems, LLC. “ACS70331: High Sensitivity, 1 MHz, GMR-Based Current Sensor IC in Space-Saving Low Resistance QFN and SOIC packages” Available: https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs70331 [Accessed: September 1, 2020]
    [71] Wacoh-Tech, Inc. “Capacitive 6-axis force sensor(200N,500Ntype)” Available: https://wacoh-tech.com/en/products/dynpick/200n_500n_rcdb.html [Accessed: September 1, 2020]
    [72] Oriental motor USA Corp, Inc. ”2相步進馬達PKP系列/PK系列PKP262FD15AW−H100” Available: https://www.orientalmotor.com.tw/products/st/list/detail/?brand_tbl_code=ST&product_name=PKP262FD15AW-H100 [Accessed: September 1, 2020]
    [73] 廖兼賢(2004)。以離散位置資訊作速度與加速度估測之研究。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
    [74] Lee, S. H., & Song, J. B. (2001). Acceleration estimator for low-velocity and low-acceleration regions based on encoder position data. IEEE/ASME transactions on mechatronics, 6(1), 58-64.
    [75] 簡隸 (2016)。使用串聯彈性致動器於肩外甲自適復健機器之阻抗控制。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
    [76] Mehling, J. S. (2015). Impedance control approaches for series elastic actuators (Doc-toral dissertation).
    [77] Gandhi, P. S., Ghorbel, F. H., & Dabney, J. (2002, December). Modeling, identification, and compensation of friction in harmonic drives. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002. (Vol. 1, pp. 160-166). IEEE.
    [78] Kennedy, C. W., & Desai, J. P. (2005). Modeling and control of the Mitsubishi PA-10 robot arm harmonic drive system. IEEE/ASME Transactions on mechatronics, 10(3), 263-274.
    [79] R. Norton, 2009, Kinematics and Dynamics of Machinery, The McGraw-Hill Companies, Inc., Singapore.

    下載圖示 校內:2025-10-06公開
    校外:2025-10-06公開
    QR CODE