簡易檢索 / 詳目顯示

研究生: 裴建昌
Pei, Chien-Chang
論文名稱: IC封裝製程之金線偏移與導線架偏移分析
Wire Sweep and Paddle Shift Modeling of IC Packages During Encapsulation Process
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 85
中文關鍵詞: 堆疊網格托盤偏移金線偏移金線偏移密度模流分析轉移射出成型塑膠IC封裝
外文關鍵詞: Transfer Molding, Paddle Shift, Wire Density Effect, Wire Sweep, Plastic Packaging of ICs, Mold Filling Analysis, Plastic Encapsulation, Stacking Element Extrusion
相關次數: 點閱:116下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文提出解決方案來預測於IC封裝充填製程所發生的金線偏移與托盤偏移現象。於模流分析過程中,網格數量通常可高達50萬至100萬,對於如此大量的網格數目,為了要縮短分析時間與增進準度,使用高品質的網格是必須的。本文介紹一種非常適用於IC封裝分析的網格產生方法 - 使用堆疊的概念並結合模型建構與網格產生。在金線偏移分析中,本文介紹一種較直接且方便的方法來考慮金線密度 - 將金線建立於模流分析的網格中,實驗證實此法可以較精準地預測金線偏移量,並且有考慮金線密度的準確度會比沒有考慮金線密度要來的好。

      托盤偏移泛指導線架與晶片的變形偏移,過大的偏移可能會降低對於內部元件的保護效果,還會影響到金線的偏移量。本文介紹一種分析方法來預測托盤偏移的量,經由計算在充填過程中導線架與晶片所受到來自塑料的壓力,並且將此壓力轉換到結構變形分析中以作為受力來源。

      另外,本文亦討論不同網格元素在整體托盤偏移分析中的表現優劣,結果顯示六面體網格或三角柱網格是遠比四面體網格適合於IC封裝分析。

     This thesis presents solutions to predict the wire sweep and paddle shift phenomenons occurring during the molding process.

     In the presented solution, the element number of mesh model is often between 500,000 ~ 1,000,000. For such large mesh model, the use of high quality mesh is important to decrease the computation time and increase the accuracy. Therefore, a suitable pre-processing solution, which combines the layer-based solid modeling and element extrusion method, is presented.

     This thesis presents a more direct and convenient approach to consider the wire density effect on the predicted amount of wire sweep by including wires in the mesh model for 3-D mold filling analysis. By comparison with experimental results, it is shown that this approach can more accurately describe the wire density effect.

     A methodology for computational modeling and prediction of paddle shift is presented. The methodology is based on modeling the flow of the polymer melt around the leadframe and paddle during the filling process, and extracting the pressure loading induced by the flow on the paddle. The pressure loading at different times during the filling process is then supplied to a three-dimensional, static, structural analysis module to determine the corresponding paddle deflections at those times. Meanwhile, the effect on the overall model performance of different element types for the mold filling analysis and the structural analysis is also investigated and discussed. In order to obtain more accurate results and a shorter computational time, it is found that higher-order elements, such as hexahedrons or prisms are more suitable than tetrahedrons.

    ABSTRACT (CHINESE) I ABSTRACT (ENGLISH) II ACKNOWLEDGEMENT IV CONTENTS V LIST OF FIGURE VII LIST OF TABLE XII CHAPTER 1 INTRODUCTION 1 1.1 PREFACE 1 1.2 FABRICATION OF THE IC PACKAGE 2 1.3 MOLDING DEFECTS: WIRE SWEEP AND PADDLE SHIFT 4 1.4 LITERATURE REVIEW 6 1.5 OUTLINE OF THESIS 8 CHAPTER 2 PRE-PROCESSING 10 2.1 INTRODUCTION TO PRE-PROCESSING 10 2.2 COMPARISON OF PRE-PROCESSING SOLUTIONS 16 2.3 INTRODUCTION TO THE PRESENTED PRE-PROCESSING SOLUTION 19 2.4 SOLID MODEL CONSTRUCTION 21 2.5 SOLID MESH GENERATION: ELEMENT EXTRUSION 29 2.6 EMBEDDED ELEMENT FILTERING 31 2.7 SUGGESTION FOR FUTURE WORK 34 CHAPTER 3 WIRE SWEEP ANALYSIS 35 3.1 PROCEDURE OF WIRE SWEEP ANALYSIS 35 3.2 APPROACHES TO INCLUDING WIRE DENSITY EFFECT IN THE SIMULATION 37 3.3 PRE-PROCESSING 40 3.4 MOLD FILLING ANALYSIS 43 3.5 DRAG FORCE EXTRACTION 46 3.6 WIRE DEFORMATION ANALYSIS 48 CHAPTER 4 PADDLE SHIFT ANALYSIS 50 4.1 PROCEDURE OF PADDLE SHIFT ANALYSIS 50 4.2 PRE-PROCESSING 53 4.3 MOLD FILLING ANALYSIS 58 4.4 PADDLE LOADING ANALYSIS 61 4.5 STRUCTURE ANALYSIS 69 4.6 PERFORMANCE COMPARISON OF DIFFERENT ELEMENT TYPES 71 CHAPTER 5 CONCLUSIONS 77 REFERENCE 79 VITA 84

    [1]. L. T. Manzione, Plastic Packaging of Microelectronic Devices, Van Nostrand, New York, 1990.
    [2]. L. S. Turng, and V. W. Wang, “On the Simulation of Microelectronic Encapsulation with Epoxy Molding Compound,” Journal of Reinforced Plastics and Composites, Vol. 12, pp. 506-519, 1993.
    [3]. S. Han, and K. K. Wang, “Flow Analysis in a Chip Cavity During Semiconductor Encapsulation,” ASME Journal of Electronic Packaging, Vol. 122, pp. 160-167, 2000.
    [4]. L. T. Nguyen, A. Danker, N Santhiran, and C. R. Shervin, “Flow Modeling of Wire Sweep During Molding of Integrated Circuits,” ASME Winter Annual Meeting, pp.27, 1992.
    [5]. S. Han, “A Study on Plastic Encapsulation of Semiconductor Chips,” Cornell Injection Molding Program Technical Report #77, 1994.
    [6]. S. Han and K. K. Wang, “Wire Sweep Analysis Related to a Semiconductor Chip Encapsulation Using a Simulated Experiment”, ASME Journal of Electronic Packaging, Vol. 117, pp. 178-184, 1995.
    [7]. S. Han, K. K. Wang, and D. L. Crouthamel, “Wire-Sweep Study Using an Industrial Semiconductor- Chip-Encapsulation Operation”, ASME Journal of Electronic Packaging, Vol. 119, pp. 247-254, 1997.
    [8]. AC Technology, “C-MOLD User’s Guide,” New York, 1995.
    [9]. L. Nguyen, C. Quentin, W. Lee, S. Bayyuk, S. A. Bidstrup-Allen, and S.-T. Wang, “Computational Modeling and Validation of the Encapsulation of Plastic Packages by Transfer Molding,” ASME Journal of Electronic Packaging, Vol. 122, pp. 138-146, 2000.
    [10]. F. Su, S.-J. Hwang, H.-H. Lee, and D.-Y. Huang, “Prediction of Paddle Shift via 3-D TSOP Modeling,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, pp. 684-692, 2000.
    [11]. P. L. George, “Automatic Mesh Generation Application to Finite Element Methods,” John Wiley &Sons, 1991.
    [12]. D. W. White, L. Mingwu, S. E. Benzley, “Automated Hexahedral Mesh Generation by Virtual Decomposition,” Proceeding, 4th International Meshing Roundtable 95, pp. 165-176, 1995.
    [13]. S. S. Liu, R. Gadh, “Automatic Hexahedral Mesh Generation by Recursive Convex and Swept Volume Decomposition,” Proceeding, 6th International Meshing Roundtable 97, pp. 217-231, 1997.
    [14]. N. Chiba, I. Nishigaki, Y. Yamashita, C. Takizawa, K. Fujishiro, ”A Flexible Automatic Hexahedral Mesh Generation by Boundary-Fit Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 161, pp. 145-154, 1998.
    [15]. C. Bajaj, S. Schaefer, J. Warren, G.. Xu, “A Subdivision Scheme for Hexahedral Meshes,” The Visual Computer, Vol. 18, pp. 343-356, 2002.
    [16]. T. Blacker, “Automated Conformal Hexahedral Meshing Constrains, Challenges and Opportunities,” Engineering with Computers, Vol. 17, pp. 201-210, 2001.
    [17]. A. O. Cifuentes and A. Kalbag, “A Performance Study of Tetrahedral and Hexahedral Elements in 3-D Finite Element Structural Analysis,” Finite Elements in Analysis and Design, Vol. 12, pp. 313-318, 1992.
    [18]. S. E. Benzley, E. Perry, K. Merkley, B. Clark and G. Sjaardema, “A Comparison of All-Hexahedral and All-Tetrahedral Finite Element Meshes for Elastic and Elasto-Plastic Analysis,” Proceedings, 4th International Meshing Roundtable 95, pp. 179-191, 1995.
    [19]. J. C. Cavendish, “Automatic Triangulation of Arbitrary Planar Domains for The Finite Element Method,” International Journal for Numerical Methods in Engineering, Vol. 8, pp. 679-696, 1974.
    [20]. T. P. Fang and L. A. Piegl, “Delaunay Triangulation Using a Uniform Grid,” IEEE Computer Graphics and Applications, Vol. 13, pp. 36-47, 1993.
    [21]. S. J. Owen, M. L. Staten, S. A. Cannann, S. Saigal, “Advancing Front Quadrilateral Meshing Using Triangle Transformations,” Proceedings, 7th International Meshing Roundtable 98, 1998.
    [22]. T. D. Blacker, et al, “Automated Quadrilateral Mesh Generation: A Knowledge System Approach,” ASEM Paper No. 88-WA/CIE-4, 1988.
    [23]. H. Q. Yang, S. A. Bayyuk, and L. T. Nguyen, “Time-Accurate, 3-D computation of wire-sweep during encapsulation of IC components,” IEEE Electronic Components and Technology Conference, pp. 158-167, 1997.
    [24]. X. H. Chen, K. S. Lee, M. M. F. Yuen and P. Tong, “Flow Modeling of Wire Sweep in Transfer Molding,” Sensing, Modeling and Simulation in Engineering Electronic Packaging ASME 1996, EEP-vol. 17, 1996.
    [25]. Jerry Su, S.-J. Hwang, Francis Su and S.-K. Chen, “An Efficient Solution for Wire Sweep Analysis in IC Packaging,” ASME Journal of Electronic Packaging, Vol. 125, pp. 139-143, 2003.
    [26]. S. Han, F. S. Costa, and S. Ray, “Three-Dimensional Simulation of Wire Sweep During Semiconductor-Chip Encapsulation,” ANTEC 2003: Annual Technical conference, Vol. 2, pp. 1310-1314, 2003.
    [27]. Moldex3D/Solid-RIM reference Manual”, CoreTech System Co. Ltd., HsinChu, Taiwan, 2003.
    [28]. R.-Y. Chang, and W.-H. Yang, “Numerical Simulation of Mold Filling in Injection Molding Using a 3-D Finite Volume Approach”, International Journal for Numerical Methods in Fluids, Vol. 37, pp. 125-148, 2001.
    [29]. R.-Y. Chang, W.-H. Yang, S.-J. Hwang, and F. Su, “Three-Dimensional Modeling of Mold Filling in Microelectronics Encapsulation Process,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, pp. 200-209, 2004.
    [30]. M. R. Kamal, and M. E. Ryan, “Injection and Compression Molding Fundamentals,” chapter 4, A. I. Isayev, ed., Marcel Dekker, New York, 1987.
    [31]. J. M. Castro, and C. W. Macosko, “Kinetics and Rheology of Typical Polyurethane Reaction Injection Molding Systems,” SPE Tech. Paper, Vol. 26, pp. 434-438, 1980.
    [32]. H. Lamb, Phil. Mag., Vol. 21, pp.112, 1911.

    下載圖示 校內:立即公開
    校外:2005-07-11公開
    QR CODE