簡易檢索 / 詳目顯示

研究生: 馮俊雄
Feng, Chun-Hsiung
論文名稱: 應用原子力顯微鏡與免疫螢光染色法探討PC-12類神經細胞之黏彈力學性質
Application of AFM and Immunofluorescence to Viscoelasticity of PC-12 Neuron-like Cells
指導教授: 朱銘祥
Ju, Ming-Shaung
林宙晴
Lin, Chou-Ching K.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 105
中文關鍵詞: 類線性黏彈性模型免疫螢光染色原子力顯微鏡PC-12神經細胞Bilodeau模型
外文關鍵詞: Atomic force microscopy, PC-12 neuron-like cell, Bilodeau model, Quasi-linear viscoelastic model, Immunofluorescent method
相關次數: 點閱:159下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周邊神經再生是目前組織工程中最重要的課題之一,過去以導管設計與促進生長藥物為研究主題,但隨著細胞力學的發展,探討外在物理性刺激對周邊神經再生的影響逐漸受到重視。

    本研究利用原子力顯微鏡進行單點斜坡動態測試,準確量測細胞黏彈力學特性。因傳統使用的彈性模型,如Hertz模型等,存在著不合理的假設,故本研究引入了類線性黏彈性模型,配合Bilodeau彈性模型估測出神經細胞的黏彈機械性質,並藉由模擬結果成功驗證僅使用彈性模型會造成楊氏模數的高估。本研究量測樣本為PC-12類神經細胞,量測細胞本體與軸突之機械特性,結果顯示本體楊氏模數為0.54±0.24 kPa,軸突之楊氏模數為4.95±2.52 kPa。此外,本研究利用免疫螢光染色影像觀察細胞骨架,證明細胞骨架分佈具有區域性,但量化後結果與楊氏模數分佈不完全一致,此結果顯示細胞骨架與細胞彈性特性並非絕對關係,日後若能加上環境控制系統,延長細胞生命,針對同一個細胞進行量測與免疫染色,可能使結果會更加準確。

    本研究首次引入類線性黏彈性模型於細胞力學領域中,結果顯示此模型略優於線性黏彈性模型與彈性模型,相信於後續研究中此模型可以提供量測細胞黏彈機械特性的有效方法。

    Peripheral nerve regeneration is one of the important issues in tissue engineering. In the past, it was focused on improvement of conduit design and drugs to promote cell growth. Cell mechanics researches have been developing rapidly in recent years and the effects of physical stimulations on growth of peripheral neural cells have attracted more researches.

    The biomechanical properties of single and attached PC-12 neural cells and axons were measured by performing ramp and hold indentation experiments by using an atomic force microscopy (AFM). The existing elastic models of PC-12 cells were derived from Hertz theory which was based on an unreasonable assumption and the Young’s modulus was over estimated. In this study, to analyze the experimentally obtained relationship between force and indentation depth, quasi-linear viscoelastic (QLV) model and Bilodeau model were utilized. The results showed that the Young’s modulus of PC-12 cell body is 0.54±0.24 kPa and 4.95±2.52 kPa for axon. Immunofluorescent method was also employed to observe the cytoskeleton (CSK). The results showed the regional distribution of CSK and no direct relationship between CSK and Young’s modulus could be found.

    In this thesis, the QLV model was first adopted for modeling the mechanics of living cells. The results showed that QLV model is more accurate than linear viscoelastic model and elastic model. QLV model may be served as an effective method for estimating viscoelastic properties of living cells. In the future, by constructing an environment control system to prolong life of cell may make possible mechanical indentation and immunofluorescent observation on the same cell and improve accuracy of the results.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 X 符號表 XI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 7 1.3 研究動機與目的 10 1.4 本文架構 11 第二章 方法與實驗 12 2.1 原子力顯微鏡 12 原子力顯微鏡的發展 12 原子力顯微鏡量測原理 14 原子力顯微鏡硬體架構 16 原子力顯微鏡力量感測系統 19 懸臂樑探針校正 21 原子力顯微鏡位置感測系統 23 原子力顯微鏡回饋系統 24 2.2 神經細胞培養與神經軸突誘導程序 26 塗附聚左旋離氨酸(Poly-L-Lysine) 26 細胞繼代培養 26 神經軸突誘發 27 2.3 細胞骨架免疫螢光染色 30 微小管的染色步驟 32 肌動蛋白染色步驟 33 細胞核染色步驟 34 螢光顯微鏡 35 2.4 細胞力學模型 36 線性黏彈性模型 37 類線性黏彈模型 39 2.5 神經細胞實驗設計 41 實驗一 細胞骨架與機械性質之相關性實驗 41 實驗二 細胞生長環境與機械性質之相關性實驗 44 細胞本體與軸突的掃瞄定位 46 細胞力學特性量測 47 第三章 結果 51 3.1 PC-12類神經細胞本體不同區域的機械性質量測結果 51 細胞本體掃瞄定位 51 細胞本體動態壓印測試 53 細胞本體類線性黏彈性模型結果 55 3.2 PC-12類神經細胞軸突不同區域的機械性質量測結果 60 細胞軸突掃瞄定位 60 細胞軸突動態壓印測試 62 細胞軸突類線性黏彈性模型結果 64 3.3 PC-12類神經細胞骨架免疫螢光染色結果 67 免疫螢光染色影像 67 影像量化結果 70 3.4 統計結果 74 3.5 細胞生長環境與機械性質之相關性實驗結果 80 第四章 討論 81 4.1 與現有文獻比較 81 4.2 神經細胞構造 89 4.3 黏彈性模型之比較 91 4.4 實驗量測誤差之探討 94 4.5 細胞貼附生長情形不佳之原因 97 第五章 結論與建議 99 5.1 結論 99 5.2 建議 100 參考文獻 101

    [1] L.A Greene and A.S. Tischler, “Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.” Proc Natl Acad Sci USA; Vol.73, pp. 2424-8, 1976.
    [2] 楊炯琳, “周邊神經再生研究的發展與展望” 化工資訊與商情月刊第2期. http://www.nctu.edu.tw/~hcsci/hospital/sci/other/pns.htm
    [3] K. Matsumoto, K. Ohnishi, T. Kiyotani, T. Sekine, H. Ueda, T. Nakamura, K. Endo and Y. Shimizu, “Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)–collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves”, Brain Research Vol. 868, No. 2, pp. 315-328, 2000.
    [4] Gerald Karp原著, 廖珍琦,呂長益,周中興編譯, 細胞與分子生物學 觀念與實驗 3rd ed. 合記出版社, 2004.
    [5] K.J. Van Vliet, G. Bao and S. Suresh, “The biomechanics toolbox - experimental approaches for living cells and biomolecules.” Acta Materialia Vol. 51, pp. 5881–5905, 2003.
    [6] H. Hertz, “Über die berührung fester elastische körper.” Jreine Angew. Mathematick, Vol.92, pp. 156-171, 1882.
    [7] I.N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of. arbitrary profile.” int ., J.Eng sci, Vol. 3, pp. 37-41, 1965.
    [8] Y. C. Fung, “Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. ”, Springer-Verlag, pp. 277-292, 1972.
    [9] A. Pugh, Introduction to tensegrity. University of California, Berkeley, 1976.
    [10] V. I. Fabrikant, Applications of Potential Theory in Mechanics: Selection of New Results. Kluwer Academic Publishers, 1989.
    [11] J. R. Barber and D. A. Billings “An Approximate Solution For the Contact Area and Elastic Compliance of a Smooth Punch of Arbitrary Shape.” Int. J. Mech. Sci., Vol. 32, No. 12, pp. 991-997, 1990.
    [12] G. G. Bilodeau, “Regular Pyramid Punch Problem.” Journal of Applied Mechanics, Vol. 59, pp. 519-523, 1992.
    [13] M. Radmacher, M. Fritz, C.M. Kacher, J.P. Cleveland and P.K. Hansma, “Measuring the viscoelastic properties of human platelets with the atomic force microscope.” Biophysi. J. Vol.70, pp. 556–567, 1996.
    [14] M. Radmacher, “Measuring the elastic properties of biological samples with the AFM.” IEEE Engineering in medicine and biology, Vol. 16, Issue 2, pp. 47–57, 1997.
    [15] E. A-Hassan, W. F. Heinz, M. D. Antonik, N. P. D’Costa, S. Nageswaran, C.-A. Schoenenberger and J. H. Hoh, “Relative Microelastic Mapping of Living Cells by Atomic Force Microscopy.” Biophysical Journal, Vol. 74, pp. 1564-1578, 1998.
    [16] C. Rotsch, K. Jacobson and M. Radmacher, “Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts. ” PNAS USA, Vol.96, pp. 921-926, 1999.
    [17] K. D. Costa and F. C. Yin, “Analysis of Indentation: Implications for Measuring Mechanical Properties With Atomic Force Microscopy.” J. Biomech. Eng., Vol. 121, pp. 462–471, 1999.
    [18] A. Mathur, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic microscopy.” J. of Biomechanics, Vol.34, pp1545-1553, 2001.
    [19] 李宗翰, “單軸應變對3T3纖維母細胞機械特性影響之研究”, 國立成功大學微機電系統工程研究所碩士論文, 2005.
    [20] D. C. Kevin, J. S. Alan and F. C. Yin, ” Non-Hertzian Approach to Analyzing Mechanical Properties of Endothelial Cells Probed by Atomic Force Microscopy.” Journal of Biomechanical Engineering, Vol. 128, pp. 176-184, 2006.
    [21] 張嘉峰, “應用原子力顯微術於PC-12類神經細胞之生物力學研究”, 國立成功大學微機電系統工程研究所碩士論文, 2006.
    [22] P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, and P. K. Hansma, “Using force modulation to image surface elasticities with the atomic force microscope.” Nanotechnology 2 103, 1991.
    [23] M. Radmacher, R. W. Tilmann and H.E. Gaub, “Imaging viscoelasticity by force modulation with the atomic force microscopy.” Biophysical Journal, Vol. 64, pp. 735-742, 1993.
    [24] S.A. Syed Asif, R.J. Colton and K.J. Wahl, “Nanoscale Surface Mechanical Property Measurements: Force Modulation Techniques Applied to Nanoindentation.”, Interfacial Properties on the Submicron Scale, ACS Books, 2000.
    [25] S. A. Syed Asif, K. J. Wahl, R. J. Colton and O. L. Warren, “Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation.”, Journal of Applied Physics, Vol 90, No. 3, pp.1192-1200, 2001.
    [26] R. E. Mahaffy, C. K. Shih, F. C. MacKintosh and J. Käs, “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells.”, PHYSICAL REVIEW LETTERS, Vol.95, No. 4, pp. 880-883, 2000.
    [27] Jordi Alcaraz, Lara Buscemi, Mireia Grabulosa, Xavier Trepat and Ben Fabry, “Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy.”, Biophysical Journal, Vol. 84, pp. 2071–2079, 2003.
    [28] R. E. Mahaffy, S. Park, E. Gerde, J. Ka¨s and C. K. Shih, “Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy.”, Biophysical Journal, Vol. 86, pp. 1777–1793, 2004.
    [29] E. A. G. Peeters, C. W. J. Oomens, C. V. C. Bouten, D. L. Bader and F. P. T. Baaijens, “Viscoelastic Properties of Single Attached Cells Under Compression.” APRIL 2005, Vol. 127 . pp. 237-243, 2005.
    [30] P. Cañadas, S. Wendling-Mansuy and D. Isabey, “Frequency response of a viscoelastic tensegrity model: Structural rearrangement contribution to cell dynamics.” J Biomech Eng. Vol. 128 No. 4, pp. 487-95. 2006.
    [31] J-L. Fan, J.-Q. Li, M.-S. Ju, and C.-C. K. Lin, “In vivo biomechanical analyses of peripheral nerves.” Proc. 2002 Conference on BME Technology, Kaohsiung, December 14-15, 2002.
    [32] R.J. Chen, M.-S. Ju, and C.-C. K. Lin, “Biomechanics of damaged and injured peripheral nerves.” Proc. 2003 Conference on BME Technology.
    [33] G. Binning, H. H. Rohrer, “Scanning tunneling microscopy from birth to adolescence.”, Rev. Modern Physics, Vol. 59, pp. 615-619, 1987.
    [34] M. A. Poggi, E. D. Gadsby, L. A. Bottomley, “Scanning probe microscopy.”, Anal. Chem., Vol. 76, pp. 3429-3444, 2004.
    [35] Johannes Diderik van der Waals, ”Nobel Lectures, Physics, Elsevier Publishing Company, Amsterdam.”, pp. 1901-1921, 1967.
    [36] “原子力顯微鏡成像中文簡易操作手冊” 成功大學醫學工程所生醫感測實驗室
    [37] Veeco Instruments, https://www.veecoprobes.com
    [38] J. E. Sader, I. Larson , P. Mulvaney and L.R. White, ’’Method for the Calibration of Atomic Force Microscope Cantilevers.“ Rev.Sci. Vol. 66, pp. 3789-3798, 1995.
    [39] Molecular Imaging, “PicoPlus User’s Manual”
    [40] W.R. Trickey, G.M. Lee and F. Guilak, “Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage.” J. Orthop Res, Vol. 18, No. 6, pp. 891-898, 2000.
    [41] D. Shin and K. Athanasiou “Cytoindentation for obtaining cell biomechanical properties.” J. Orthop Res, Vol. 17, No. 6, pp. 880-890, 1999.
    [42] A. A. Sauren and E.P. Rousseau “A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung.” J. Biomech Eng. Vol. 105, No. 1, pp. 92-95, 1983.
    [43] M. Sugawara, Y. Ishida and H. Wada, “Local mechanical properties of guinea pig outer hair cells measured by atomic force microscopy.” Hearing Research, Vol. 174, pp. 222-229, 2002.
    [44] M. Sugawara, Y. Ishida and H. Wada, “Mechanical properties of sensory and supporting cells in the organ of Corti of the guinea pig cochlea – study by atomic force microscopy.” Hearing Research, Vol. 192, Issues 1-2, pp. 57-64, 2004.
    [45] E.M. Darling, S. Zauscher and F. Guilak “Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. “ Osteoarthritis Cartilage. Vol. 14, No. 6, pp. 571-579, 2006.
    [46] T. Matsumoto, J. Sato, M. Yamamoto and M. Sato, “Development of A Novel Micro Tensile Tensor For Viscoelastic Analysis of Aortic Smooth Muscle Cells.” Biomechanics at Micro- and Nanoscale Levels, Vol. 1, pp. 16-25, 2005.
    [47] M. Sato, D.P. Therent, L.T. Wheeler, N. Ohshima and R.M. Nerem, “Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties.” J. Biomech Eng. Vol. 112, No. 3, pp. 263-268, 1990.
    [48] O. Thoumine and A. Ott, “Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation.” J Cell Sci, Vol. 110, pp.2109-2116, 1997.
    [49] U. G. Hofmann, C. Rotsch, W. J. Parak, M. Radmacher, “Investigating the cytoskeleton of living chicken cardiocytes with the AFM.”, J. Struct. Biol. 119, 84-91, 1997.
    [50] Z.-Z. Wu, G. Zhang, M. Long, H.-B. Wang, G.-B. Song, S.-X. Cai, “Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation.” Biorheology, Vol. 37, pp. 279-290, 2000.
    [51] E. J. Koay, A. C. Shieh and K. A. Athanasiou, “Creep Indentation of Single Cells.” ASME J. Biomech. Eng. Vol. 125, pp. 334–341, 2003.
    [52] Alberts et al, “Molecules of the cytoskeleton. “ London 1994.
    [53] F. Gittes, B. Mickey, J. Nettleton, and J. Howard, “Flexural Rigidity of Microtubules and Actin Filaments Measured from Thermal Fluctuations in Shape.” The Journal of Cell Biology, Vol. 120, No. 4, pp. 923-934, 1993.
    [54] Y. C. Fung, Introduction to bioengineering. World Scientific, 2001.
    [55] Y. Xu, X.-S. Ye, G.-X. Xu, R. Li and P. Wang, “The Research and Development of the Surface Processing Technique for Cell-Based Biosensors.” 傳感技術學報, 第二期, pp. 342-348, 2004.
    [56] “準分子雷射微細加工機一般使用者訓練教材” 國立成功大學機械工程系準分子雷射共同實驗室, 2006.

    下載圖示 校內:2012-08-16公開
    校外:2012-08-16公開
    QR CODE