| 研究生: |
葉鎮僥 Yeh, Chen-Yao |
|---|---|
| 論文名稱: |
基於合成視角失真估計之深度圖編碼 Depth Map Coding Based on Distortion Estimation of Synthesized View |
| 指導教授: |
楊家輝
Yang, Jar-Ferr |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 深度圖編碼 、多視角影片及多視角深度圖 、位元率及失真最佳化 、合成視角失真 、失真準則 |
| 外文關鍵詞: | Depth map coding, multi-view plus depth, rate-distortion optimization, synthesized view distortion, distortion metric |
| 相關次數: | 點閱:179 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來3D立體影片越來越流行,其資料量相較於傳統2D影片來的龐大許多,而使用多視角影片加上其對應之多視角深度圖 (MVD) 格式,再利用基於深度影像之繪圖法 (DIBR),即可有效地傳送或儲存3D影片。傳統上在深度圖壓縮時的位元率及失真最佳化 (RDO) 過程中,直接考慮深度圖本身的失真。然而在實際應用中深度圖並不會直接被使用者觀看,它只是DIBR所需的輔助資訊而已。所以後來有人認為考慮合成視角的失真是比較好的做法。在本篇論文之中,我們從頻率域的角度去分析深度圖壓縮所產生的失真對合成視角之失真的影響,並提出一個基於合成視角失真估計的深度圖失真評估準則,取代傳統的RDO過程。實驗結果顯示我們的方法可以比傳統的RDO過程節省45% BDBR。
3D video becomes more and more popular recent years. The multi-view video plus depth (MVD) format assisted with depth-image-based rendering (DIBR) technique is an efficient representation of 3D video. Conventionally in depth map coding, the distortion in the rate-distortion optimization (RDO) procedure is only measured with the sum of squared differences (SSD) of depth map. But depth map is just a supplementary data for view synthesis. So the quality of depth map is not highly correlated with the quality of the synthesized view, instead we should take the quality of synthesized view into consideration in the RDO procedure. In this thesis, the relationship between the synthesized view distortion and the depth coding error is analyzed in the frequency domain. Thus an efficient depth map coding based on a new distortion metric is proposed. Then in the RDO procedure, the depth distortion is replaced by the estimated synthesized view distortion. The simulation results show that the proposed distortion metric could achieve about 45% BDBR saving for depth data compared to the conventional scheme.
[1] ITU-T Rec. H.261, “Video codec for audiovisual services at p × 64 kbit/s,” Dec. 1990.
[2] ITU-T Rec. H.262 and ISO/IEC 13818-2, “Information technology—generic coding of moving pictures and associated audio information: video,” Jul. 1995.
[3] ITU-T Rec. H.263, “Video coding for low bit rate communication,” Mar. 1996.
[4] ISO/IEC 11172-2, “Information technology—coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s—part 2: video,” Aug. 1993.
[5] ISO/IEC 14496-2, “Information technology—coding of audio-visual objects—part 2: visual,” Jan. 1999.
[6] ITU-T Rec. H.264 and ISO/IEC 14496-10, “Advanced video coding for generic audiovisual services,” May 2003.
[7] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560-576, Jul. 2003.
[8] ITU-T Rec. H.265 and ISO/IEC 23008-2, “High efficiency video coding (HEVC),” Jan. 2013.
[9] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.
[10] ISO/IEC JTC1/SC29/WG11, “Text of ISO/IEC 14496-10:2008/FDAM 1 Multiview video coding,” doc. w9978, Oct. 2008.
[11] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G. B. Akar, G. Triantafyllidis, and A. Koz, “Coding algorithms for 3DTV – A survey,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 11, pp. 1606-1621, Nov. 2007.
[12] ISO/IEC JTC1/SC29/WG11, “Applications and requirements on 3D video coding,” doc. N12035, Mar. 2011.
[13] P. Merkle, A. Smolic, K. Muller, and T. Wiegand, “Multi-view video plus depth representation and coding,” in Proc. IEEE Int. Conf. Image Process., vol. 1, pp. 201-204, 2007.
[14] C. Fehn, “Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV,” in Proceedings of SPIE Stereoscopic Displays and Virtual reality Systems XI, pp. 93-104, 2004.
[15] ISO/IEC JTC1/SC29/WG11, “3D-AVC test model 9”, doc. m32664, Jan. 2014.
[16] ISO/IEC JTC1/SC29/WG11, “Test model 7 of 3D-HEVC and MV-HEVC”, Jan. 2014.
[17] P. Merkle, Y. Morvan, A. Smolic, and D. Farin, “The effects of multiview depth video compression on multiview rendering,” Signal Process.: Image Commun., vol. 24, no. 1-2, pp. 73-88, Jan. 2009.
[18] W. S. Kim, A. Ortega, P. L. Lai, D. Tian, and C. Gomila, “Depth map coding with distortion estimation of rendered view,” in Proc. SPIE Vis. Inf. Process. Commun., 2010.
[19] W. S. Kim, A. Ortega, P. L. Lai, D. Tian, and C. Gomila, “Depth map distortion analysis for view rendering and depth coding,” in Proc. IEEE Int. Conf. Image Process., pp. 721-724, 2009.
[20] D. V. S. X. D. Silva and W. A. C. Fernando, “Intra mode selection for depth map coding to minimize rendering distortions in 3D video,” IEEE Trans. Consumer Electron., vol. 55, no. 4, pp. 2385-2393, Nov. 2009.
[21] B. T. Oh, J. Lee, and D.-S. Park, “Depth map coding based on synthesized view distortion function,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 7, pp. 1344-1352, Nov. 2011.
[22] L. Wang, and L. Yu, “Rate-distortion optimization for depth map coding with distortion estimation of synthesized view,” IEEE International Symposium on Circuits and Systems, pp. 17-20, May 2013.
[23] G. Tech, H. Schwarz, K. Muller and T. Wiegand, “3D video coding using the synthesized view distortion change,” Picture Coding Symposium, pp. 25-28, May 2012.
[24] H. Yuan, S. Kwong, J. Liu, and J. Sun, “A novel distortion model and Lagrangian multiplier for depth maps coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 3, pp. 443-451, Mar. 2014.
[25] H.-P. Deng, L. Yu, B. Feng, and Q. Liu, “Structural similarity-based synthesized view distortion estimation for depth map coding,” IEEE Trans. Consumer Electron., vol. 58, no. 4, pp. 1338-1344, Nov. 2012.
[26] Q. Zhang, P. An, Y. Zhang, and Z. Zhang, “Efficient rendering distortion estimation for depth map compression,” IEEE International Conference on Image Processing, pp. 1105-1108, Sep. 2011.
[27] T.-Y. Chung, W.-D. Jang, and C.-S. Kim, “Efficient depth video coding based on view synthesis distortion estimation,” IEEE Visual Communications and Image Processing, pp. 1-4, Nov. 2012.
[28] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Processing Mag., vol. 15, pp. 74-90, Nov. 1998.
[29] T. Wiegand, H. Schwarz, A. Joch and F. Kossentini “Rate-constrained coder control and comparison of video coding standards,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 688-703, Jul. 2003.
[30] ISO/IEC JTC1/SC29/WG11, “High efficiency video coding (HEVC) test model 15 (HM 15) encoder description,” doc. m33552, Apr. 2014.
[31] ISO/IEC JTC1/SC29/WG11, “Test model under consideration for HEVC based 3D video coding”, doc. N12559, Feb. 2012.
[32] H. Yuan, Y. Chang, F. Yang, and Z. Lu, “Model-based joint bit allocation between texture videos and depth maps for 3-D video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 4, pp. 485-497, Apr. 2011.
[33] P. Lai, A. Ortega, C. Dorea, P. Yin, and C. Gomila, “Improving view rendering quality and coding efficiency by suppressing compression artifacts in depth-image coding,” in Proc. of Visual Communic. and Image Proc., Jan. 2009.
[34] A. Secker and D. Taubman, “Highly scalable video compression with scalable motion coding,” IEEE Trans. on Image Proc., vol. 13, no. 8, pp. 1029-1041, Aug. 2004.
[35] G. Bjontegaard, “Calculation of average PSNR differences between RD-curves,” ITU-T SG.16 Q.6, doc. VCEG M33, Apr. 2001.
校內:2019-09-01公開