簡易檢索 / 詳目顯示

研究生: 白啟正
Bai, Chi-Jeng
論文名稱: 利用改良型葉片元素動量理論、風洞量測與數值模擬之方法進行水平軸式風力機葉片之設計與性能分析
Horizontal-Axis Wind Turbine Blade Design and its Aerodynamic Performance Analysis Using Improved Blade Element Momentum Theory, Wind Tunnel Measurement, and Numerical Simulation
指導教授: 蕭飛賓
Hsuao, Fei-Bin
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 103
中文關鍵詞: 水平軸式風力機葉片元素動量理論風洞測試數值模擬
外文關鍵詞: horizontal-axis wind turbine, blade element momentum theory, wind tunnel experiment, numerical simulation
相關次數: 點閱:107下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水平軸式風力機葉片運轉於高轉速或承受高風速時會產生嚴重的失速現象,此時傳統型葉片元素動量理論已經無法精確的針對運轉中失速區域的葉片進行性能之預測。因此本研究先利用相關之修正因子加入傳統型葉片元素動量理論,如葉尖修正因子(tip-loss factor)、失速延遲模型(stall delay model)與VC失速模型(Viterna-Corrigan stall model)。三種不同操作型態之葉片將被驗証於改良型葉片元素動量理論。其中兩款為國家能源再生實驗室(National Renewable Energy Laboratory, NREL)所開發出之水平軸式風力機定速型操作系統,另一款為國立成功大學(National Cheng Kung University, NCKU)所開發之四百瓦水平軸式風力機變速型操作系統。其功率曲線結果與風洞實驗數據比對後,可証明改良型葉片元素動量理論可得到良好的結果。
    在証明改良型葉片元素動量理論的可行性之後,持續再利用該理論設計出於額定風速(rated wind speed)為10 m/s與設計周速比(design tip speed ratio)為5時之水平軸式風力機葉片,該葉片之斷面形狀是使用NACA4418之翼型,直徑為0.72 m,每斷面於設計點之下可得到最佳之節距角(pitch angle)與弦長(chord length)之分佈。另一款葉片有最佳節距角分布但無最佳弦長分布,最後一款葉片為無節距角與弦長之分布。三款不同幾何形狀之葉片將同時進行全尺寸之風洞測試。
    最後,本研究也利用數值模擬之方法進行驗證,並觀察改良型葉片元素理論與風洞測試所無法觀察之流場部份。發現數值模擬之方法可準確的計算出水平軸式風力機葉片之性能,並可有效並簡易的觀察流場現象。

    Due to occurrence of blade stall at high wind speed or high rotational blade speed of a wind turbine, the blade element momentum (BEM) theory based on the given aerodynamic performance data of airfoil will become inaccurate for the performance prediction of a horizontal-axis wind turbine (HAWT) blade. Therefore, in this study the BEM theory is incorporated with the proposed tip-loss factor, Viterna-Corrigan stall model and stall delay model to improve the accuracy and applicability for wind turbine blade performance prediction. To verify the proposed method of the improved BEM theory, three different types of operation and geometry of HAWT blades are used and compared to justify the proposed method. Two wind turbines developed by National Renewable Energy Laboratory (NREL) are operated at the constant rotational speed but with different blade geometry design, while another wind turbine has been developed in National Cheng Kung University (NCKU) is operated at the variable rotational speed with the turbine blades tapered and twisted. Results clearly indicate that the prediction of the power curves from the proposed method can effectively match with the experimental data even in the blade stall region, which is commonly inaccurate and failed to predict the power curve of the wind turbine by the traditional BEM theory.
    It is now believed that the improved BEM theory is available for the prediction of the performance of the HAWT blades Thus, there are three different HAWT blade geometries with the same diameter of 0.72 m and the NACA4418 airfoil profile that have been designed and the design conditions of the turbine blade in order to display the optimum distributions of pitch angle and chord length in each section including the rated wind speed, design tip speed ratio, number of blades and design angle of attack. The first one is an optimum (OPT) blade shape, which was obtained by the improved BEM theory, and a detailed description of the blade geometry is given here. The second one is an untapered and optimum twist (UOT) blade that has the same twist distributions with the OPT blade. The third blade is the untapered and untwisted (UUT). The wind tunnel experiment has been used to measure the power coefficient of these blades. Results indicate that both OPT and UOT blades have performed the same maximum power coefficient of Cp=0.428 but located at different tip speed ratio of λ=4.92 and λ=4.32, respectively, while the UUT blade has obtained the maximum power coefficient of Cp=0.210 at λ=3.86.
    After the model tests had been undertaken, numerical simulation was performed by means of fully three-dimensional computational fluid dynamics (CFD) method using the k-ω SST turbulence model. It has been found that CFD calculations reproduced the model power coefficient almost closely. The good agreement of the three models between the measured and computed power coefficients tend to accurately prove the predictions of HAWT blade performance at full-scale conditions are also possible using the CFD method.

    ABSTRACT IN CHINESE...........i ABSTRACT.....................ix CONTENTS.....................xi LIST OF TABLES..............xiv LIST OF FIGURES..............xv NOMENCLATURE.................xx CHAPTER I INTRODUCTION........1 1.1 Modern Wind Turbine.......1 1.2 The Role of Aerodynamics in Wind Turbine Blade Design..4 1.3 Principles of HAWT Blade Aerodynamics..................7 1.4 Development of HAWT Systems in NCKU...................12 1.5 Motivation and Objectives.............................14 1.6 Dissertation Overview.................................16 CHAPTER II THE IMPROVED BLADE ELEMEMT MOMENTUM THEORY.....17 2.1 One-Dimensional Momentum Theory.......................17 2.2 Airfoil Characteristics...............................20 2.2.1 Airfoil Behavior....................................21 2.2.2 Non-Dimensional Parameters..........................22 2.3 Equations.............................................23 2.3.1 The Momentum Equations..............................23 2.3.2 The Blade Element Theory............................24 2.3.3 The Blade Element Momentum Equations................26 2.4 HAWT Blade Design.....................................29 2.5 Correction Factors....................................34 2.5.1 Tip Loss Factor.....................................34 2.5.2 Stall Delay Effect..................................35 2.5.3 Viterna-Corrigan (VC) Stall Model...................36 2.5.4 The Improved BEM Equations..........................39 CHAPTER III EXPERIMENTAL SETUP............42 3.1 Concept of Matching Problem...........42 3.2 Generator Test Platform...............43 3.3 Test Models...........................44 3.4 Wind Tunnel Measurement...............49 CHAPTER IV NUMERICAL SIMULATION...........54 4.1 Numerical Methods.....................54 4.1.1 Governing Equations.................53 4.1.2 Standard k-ε Turbulence Model.......55 4.1.3 RAG k-ε Turbulence Model............56 4.1.4 SST k-ω Turbulence Model............57 4.2 2D Simulation.........................59 4.3 3D Simulation.........................64 CHAPTER V RESULTS AND DISCUSSION..........66 5.1 Improved BEM Comparison...............66 5.1.1 Comparison of NREL PHASE Ⅱ Wind Turbine.....66 5.1.2 Comparison of NREL PHASE Ⅲ Wind Turbine.....69 5.1.3 Comparison of HE-HAWT400 Wind Turbine....... 70 5.1.4 Comparison of Power Coefficient..............74 5.2 Wind Tunnel Measurement Results.......75 5.3 Numerical Simulation Results..........77 CHAPTER VI CONCLUSIONS....88 REFERENCE.................91 VITA......................95 PUBLICATION LIST..........96

    1.Manwell, J. F., McGowan, J. G., and Rogers, A. L., 2009, “Wind Energy Explained - Theory, Design and Application,”John Wiley & Sons Ltd, United Kingdom W. S., pp. 83-138.
    2.Lanzafame, R., and Messina, M., 2007, “Fluid Dynamics Wind Turbine Design: Critical Analysis, Optimization and Application of BEM Theory,” Renewable Energy, 32, pp.2291-2305.
    3.Tangler, J. L., 2002, “The Nebulous Art of Using Wind Tunnel Aerofoil Data for Predicting Rotor Performance,” Wind Energy, 5, pp.245-257.
    4.Pape, A. L., and Lecanu, J., 2004, “3D Navier-Stokes Computations of a Stall-regulated Wind Turbine,” Wind Energy, 7, pp.309-324.
    5.Johansen, J., and Sørensen, N. N., 2004, “Aerofoil Characteristics from 3D CFD Rotor Computations,” Wind Energy, 7, pp.283-294.
    6.Carcangiu, C. E., Sørensen, J. N., Cambuli F., and Mandas, N., 2007, “CFD-RANS Analysis of the Rotational Effects on the Boundary Layer of Wind Turbine Blades,” Journal of Physics: Conference Series, 75, pp.12-31.
    7.Glauert, H., Airplane Propellers. Aerodynamic Theory, Dover Publications, New York, 1963.
    8.Fuglsang, P., and Back, C., 2004, “Development of the Risø wind turbine airfoils,” Wind Energy, 7, pp.145-162.
    9.Selig M. S., McGranahan B. D., and Broughton B. A., Summary of Low-Speed Airfoil Data, SoarTech Publications, Virginia, USA, 1995.
    10.Viterna, L. A., and Corrigan, R. D., 1981, “Fixed pitch rotor performance of large horizontal axis wind turbines,” DOE/NASA Workshop on Large Horizontal Axis Wind Turbines, 15, pp.69-85.
    11.Gerber, B. S., Tangler, J. L., Duque, E. P. N., and Kocurek, J. D., 2005, “Peak and Post-Peak Power aerodynamics from phase ⅤⅠ NASA Ames Wind Tunnel Data,” Transactions of the ASME, 127, pp.192-199.
    12.Himmelskamp, H., Profile investigations on a rotating airscrew, MAP Volkenrode Report and Translation, 1947, No. 832.
    13.McCroskey, W. J., Measurements of boundary layer transition, separation and streamline direction on rotating blades,NASA TN D-6321, 1971.
    14.Savino, J. M., and Nyland, T. W., 1985, Wind Turbine Flow Visualization Studies, Technical Report, NASA Lewis Research Center, Cleveland, OH.
    15.Madsen, H., and Christensen, H., 1990, “On the Relative Importance of Rotational, Unsteady and Three-Dimensional effects on the HAWT Rotor Aerodynamics,” Wind Engineering, 14, pp.405-415.
    16.Ronsten, G., 1992, “Static Pressure Measurements on a Rotating and a Non-rotating 2.375 m Wind Turbine Blade. Comparison with 2D calculations,” Journal of Wind Engineering & Industrial Aerodynamics, 39, pp.105-118.
    17.Schreck, S. J., Sørensen, N. N., and Robinson, M. C., 2007, “Aerodynamic structures and processes in rotationally augmented flow fields,” Wind Energy, 10, pp.159-178.
    18.Dumitrescu, H., and Cardos, V., 2003, “Rotational Effects on the Boundary-layer Flow in Wind Turbines,” AIAA journal, 42, pp.408-411.
    19.Narramore, J. C. and Vermeland, R., 1992, “Navier-Stokes Calculations of Inboard Stall Delay Due to Rotation,” Journal of Aircraft, 29, pp.73-78.
    20.Bai, C. J., and Hsiao, F. B., 2008, “Using CFD Computation for Aerodynamic Performance Design and Analysis of Horizontal Axis Wind Turbine Blade,” CFD conference, Kaohsiung, Taiwan.
    21.Vitale, A. J., and Rossi, A. P., 2008, “Software tool for horizontal-axis wind turbine simulation,” International Journal of Hydrogen Energy, 33, pp.2460-2465.
    22.Hirahara H., Hossain M. Z., and Kawahashi M., 2005, “Nonomura Y. Testing basic performance of a very small wind turbine designed for multi-purpose,” Renewable Energy, 30, pp.1279-1297.
    23.Koki K., Taniguchi H., Suzuki J., Ibano H., Kakashi K., and Turuhami M., 2005, “Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine,” Energy, 30, pp.2089-2100.
    24.Sajjan, S. V., Savanur, R. A., and Mudkavi, V. Y., “CFD Analysis of 500 kW Horizontal-Axis Wind Turbine Blades: Straight and Bent Cases,” 11th Annual CFD Symposium, Bangalore, India, 11 August-12 August 2009.
    25.Tachos, N. S., Filios, A. E., Margaris, D. P., and Kaldellis, J. K. A., 2009, “Computational Aerodynamics Simulation of the NREL Phase Ⅱ Rotor,” The Open Mechanical Engineering Journal, 3, pp.9-16.
    26.Potsdam, M. A., and Mavriplis, D. J., “Unstructured Mesh CFD Aerodynamic Analysis of the NREL Phase VI Rotor,” 47th AIAA Aerospace Sciences Meeting, Orlando, Florida, USA, 5 January-8 January 2009.
    27.Sψrensen, N. N., Michelsen, J. A., and Schreck, S., 2002, “Navier-Stokes Predictions of the NREL Phase VI Rotor in the NASA Ames 80 ft × 120 ft Wind Tunnel,” Wind Energy, 5, pp.151-169.
    28.Hsiao, F. B., and Bai, C. J., 2013, Accepted for publication in Journal of Chinese Society of Mechanical Engineers.
    29.Drela M. XFOIL: an analysis and design system for low Reynolds number airfoils. Conference Proceedings on Low Reynolds Number Aerodynamics, Notre Dame, Indiana, USA, 5 June-7 June 1989.
    30.Glauert, H., 1948, The Elements of Aero Foil and Airscream Theory, Cambridge University Press, Cambridge, England.
    31.Snel, H., Houwink, R., van Bussel, G. J. W., and Bruining, A., 1993, “Sectional Prediction of 3D effects for stalled flow on rotating blades and comparison with measurements,” European Community Wind Energy Conference Proceedings, Lübeck- Travemünde, Germany, pp.395-399.
    32.Hsieh, M. F. and Hsu, Y. C., 2011, “A Generalized Magnetic Circuit Modeling Approach for Design of Surface Permanent-Magnet Machines,” IEEE, 59, pp.779-792.
    33.Liu, Y. C., and Hsiao, F. B., 2012, “Aerodynamic Investigations of Low-Aspect-Ratio Thin Plate Wings at Low Reynolds Numbers,” Journal of Mechanics, 28, pp.77-89.
    34.Simms, D., Schreck, S., Hand, M., and Fingersh, L. J., 2001, NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: comparison of predictions to measurements. NREL/TP-500-29494, NREL.
    35.Barlow, J. B., Rae, W. H., and Pope, 1999, A. Low-Speed Wind Tunnel Testing, 3rd ed.; Wiley-Interscience: Canada, 7, pp. 328-441.
    36.Kang, H. S., and Meneveau, C., 2010, “Direct mechanical torque sensor for model wind turbines,” Measurement science and technology, 21, pp.1-10
    37.Shepers, J. G., Brand, A. J., Bruining, A., Graham, J. M. R., Hand, M. M., Infield, D. G., Madsen, H. A., Maeda, T., Paynter, J. H., van Rooij, R., Shimizu, Y., Simms, D. A., 2002, “Final Report of IEA Annex XVIII: Enhanced Field Rotor Aerodynamics Database,”ECN-C-02-016, Netherlands Energy Research Foundation.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE