| 研究生: |
洪崧源 Hong, Song-Yuan |
|---|---|
| 論文名稱: |
奈米線電晶體之製備與探討 The fabrication and study of nanowire transistors |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 奈米線 、電晶體 、介電泳 |
| 外文關鍵詞: | transistor, dielectrophoresis, nanowire |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在探討奈米線電晶體之製備。以介電泳法來排列奈米線,因為這項技術不需要特殊設備、低成本、方便。但是在排列奈米線後,存在著奈米線與電極接觸電阻過高的問題。為了改善利接觸電阻過高的問題,本論文開發出熱壓法及自我對準技術來改善接觸電阻問題,並製作元件探討其電性。熱壓法是利用鍍有類鑽碳膜的矽基板為壓版,在180oC下將奈米線壓入電極中。由電性圖可知,兩端電阻在經過熱壓後已大幅降低。利用此法改變不同電極厚度,所製備的電晶體電性其threshold voltage介於-7.4~2.8V 、electron mobility介於5.6~41.7cm2V-1s-1、on-off current ratio 介於104~106。而自我對準技術則是利用從透明基板背面曝光之方式,以第一層金屬電極為光罩,將第二層電極準確地沉積在第一層電極上。在沉積上電極後可大幅地將低接觸電阻,也解決了一般以光微影定義第二層圖案需對準的問題。以PVP為介電層,利用此法所製備的電晶體特性為on/off current ratio~104,subthreshold slope~840 mV/dec,electron mobility~86.5 cm2V-1s-1,threshold voltage~4.6 V。
The main subject of this dissertation was about the fabrication of nanowire field-effect transistors (NW-FETs). In this study, dielectrophoresis (DEP) was applied to manipulate nanowires because it’s easy, low cost and doesn’t require specialized skills and equipment. But the poor contact between nanowires and electrodes after DEP is the problem for fabricating NW-FETs. In order to overcome the problem, hot-pressing method and self-aligned technique were applied to lower the contact resistance. Hot-pressing method was using a piece of Si substrate coated with DLC (diamond-like carbon) to cover the sample substrate and applied a constant force under high temperature. After hot-pressing process, nanowires were sunk into electrodes and I-V curve shows contact resistance was improved significantly. The high-performance NW-FETs showed threshold voltage of -7.4~2.8V, electron mobility of 5.6~41.7cm2V-1s-1, on-off current ratio of 104~106. About the self-aligned method, the second metal layer pattern was defined using first metal layer as mask during the backside exposure. By I-V characteristics, the high performance NW-FETS showed on/off current ratio of 104,subthreshold slope of 840mV/dec, electron mobility of 86.5cm2V-1s-1, threshold voltage of 4.6V. The high performance device fabricated by our methods indicated DEP combined with hot-pressed method or self-aligned technique were with the potential to be applied to the fabrication of flexible electronics in large-area.
[1] The Nanoscale science and technology group at the IBM, T. J. Watson Research Center, York t own Heights, New York.
[2]http://en.wikipedia.org/wiki/Moore%27s_law
[3]http://en.wikipedia.org/wiki/Immersion_lithography
[4]S. Iijima,Nature,354,56(1991).
[5] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 149 (2003)
[6] M-C Jeong, B-Y Oh, M-H Ham, S-W Lee and J-M Myoung, Small 3, 568 (2007).
[7] J C Johnson, H Yan, R D Schaller, L H Haber, R J Saykally and P Yang, J. Phys. Chem. B 105, 11387 (2001).
[8] D Zhang, Z Liu and C Zhou C, Mater. Res. Soc. Symp. Proc. 828, A2.7 (2004).
[9] G Zheng, F Patolsky, Y Cui, W U Wang and C M Lieber, Nat. Biotechnol. 23 ,1294 (2005).
[10] M Law, L E Greene, J C Johnson, R Saykally and P Yang, Nat. Mater. 4, 455 (2005).
[11] Roco, M. C. (2007)。 National Nanotechnology Initiative-Past, Present, Future, Handbook on Nanoscience, Engineering and Technology, 2nd, Taylor and Francis, 2007, pages3.1-3.26.
[12] K. Yamamoto, S. Akita and Y. Nakayama, J. Phys. D: Appl. Phys. 31, L34 (1998).
[13] Y. Huang, X. Duan, Q. Wei , C. M. Lieber, Science 291, 630 (2001)
[14] D. Whang, S. Jin, Y. Wu, and C. M. Lieber, Nano Lett. 3, 1255-1259 (2003).
[15] G. H. Yu, A. Y. Cao, and C. M. Lieber, Nanotechnology 2, 372-377 (2007).
[16] S M Sze and K NgKwok, Physics of Semiconductor Devices, 3rd edition, Wiley-Interscience (2007).
[17] S M Sze, Physics of semiconductor devices (Wiley: New York) (1981).
[18] D Wang, Y L Chang, Q Wang, J Cao, D B Farner, R G Gordon and H Dai, J. Am. Chem. Soc. 126 11602 (2004).
[19] R Martel, T Schmidt, H R Shea, T Hertel and Ph Avouris, Appl. Phys. Lett. 73, 2447 (1998).
[20]http://upload.wikimedia.org/wikipedia/commons/d/d7/IvsV_mosfet.png
[21] X Duan, C Niu, V Sahi, J Chen, J W Parce, S Empedocles and J L Goldman, Nature 425, 274 (2003).
[22] S Jin, D Whang, M C McAlpine, R S Friedman, Y Wu and C M Lieber, Nano Lett. 4, 915 (2004).
[23] J H Ahn, H S Kim, K J Lee, S Jeon, S J Kang, Y Sun, R G Nuzzo and J A Rogers, Science 314, 1754 (2006).
[24] A Javey, S W Nam, R S Friedman, H Yan and C M Lieber, Nano Lett. 7, 773(2007).
[25] Y Li, J Xiang, F Qian, S Gradečak, Y Wu, H Yan, D A Blom and C M Lieber, Nano Lett. 6, 1468 (2006).
[26] J Xiang, W Lu, Y Hu, Y Wu, H Yan and C M Lieber, Nature 441, 489 (2006).
[27] D Hisamoto, W C Lee, J Kedzierski, H Takeuchi, K Asano, C Kuo, E Anderson, T-J King, J Bokor and C Hu, IEEE Trans. Electron Devices 47, 2320 (2000).
[28] V Schmidt, H Riel, S Senz, S Karg, W Riess and U Gsele, Small 2, 85 (2006).
[29] J Goldberger, A I Hochbaum, R Fan and P Yang, Nano Letter. 6, 973 (2006).
[30] K Keem, D Y Jeong, S Kim, M S Lee, In S Yeo, U I Chung and J T Moon, Nano Lett. 6, 1454 (2006).
[31] Zhang L, Tu R and Dai H, Nano Lett. 6, 2786(2006).
[32] C S Lao, J Liu, P Gao, L Zhang, D Davidovic, R Tummala, Z L Wang, Nano Lett. 6, 263 (2006).
[33] S Myung, M Lee, G T Kim, J S Ha and S Hong, Adv. Mater. 17, 2361 (2005).
[34] S Liu, J B-H Tok, J Locklin, Z Bao, Small 2, 1448 (2006).
[35] Z Fan, J C Ho, Z A Jacobson, R Yerushalm, R L Alley, H Razavi and A Javey, Nano Lett. 8, 20 (2008).
[36] Y Zhang, A Chang, J Cao, Q Wang, W Kim, Y Li, N Morris, E Yenilmez, J Kong and H. Dai, Appl. Phys. Lett. 79, 3155 (2001).
[37] B Nikoobakht, C A Michaels, S J Stranick, M D Vaudin, Appl. Phys. Lett. 85, 3244 (2004).
[38]A Ismach, D Kantorovich, E Joselevich, J. Am. Chem. Soc. 127, 11554 (2005).
[39] S J Kang, C Kocabas, T Ozel, M Shim, N Pimparkar, M A Alam, S V Rotkin and J A Rogers, Nat. Nanotechnol. 2, 230 (2007).
[40] S Huang, M Woodson, R Smalley and J Liu, Nano Lett. 4, 1025 (2004).
[41] D I Suh, S-Y Lee, J-H Hyung, T-H Lim and S-K Lee, J. Phys. Chem. C 112, 1276 (2008).
[42] W-K Hong, B J Kim, T-W Kim, G Jo, S Song, S-S Kwon, A Yoon, E A Stach and T Lee, Colloids Surfaces A 313 ,378 (2008).
[43] D-I Suh, S-Y Lee, J-H Hyung, T-H Kim and S-K Lee, J Phys. Chem. C 112, 1276 (2008).
[44] Q H Li, Y X Liang, Q Wan and T H Wang, Appl. Phys. Lett. 85, 6389 (2004).
[45] J-H Choi, D-Y Khang and J-M Myoung, Solid State Commun. 148, 126 (2008).
[46] Y-Y Noh, X Cheng, H Sirringhaus, J I Sohn, M E Welland and D J Kang, Appl. Phys. Lett. 91, 043109 (2007).