簡易檢索 / 詳目顯示

研究生: 曾皓峰
Chang, Hou-Fong
論文名稱: 應用超額孔隙水壓比對潛在液化砂土層側向載重樁之影響分析
Effects of Excess Pore Water Pressure on Laterally Loaded Piles in Liquefiable Sandy Soil
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 142
中文關鍵詞: 基樁p-y曲線土壤液化超額孔隙水壓力
外文關鍵詞: pile, p-y curve, soil liquefaction, excess pore water pressure
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較陸上風機,離岸風機在設計基礎時需特別注重因風力、波浪以及海流外力等側向力對問題,再加上台灣離岸土層較為軟弱,地震頻繁以致土壤多具液化潛勢等因素,對基樁側向抵抗力要求更高。本文主要研究基樁在較深層土壤液化時,利用LPILE Plus v5.0以及GROUP 7.0 程式模擬不同程度地震引發土壤液化後基樁與土壤之間的互制行為,並且以台灣福海離岸風場之風機二號土層資料為實例分析。將以往學者提出之土壤液化時產生的超額孔隙水壓比對p-y曲線修正方法應用至現地土層,配合現今台灣《建築物基礎構造設計規範》中對液化地盤設計要求,並嘗試提出新的p-y曲線修正法來比較基樁在不同修正法之樁身位移、旋轉角變量與最大彎矩值,以及超額孔隙水壓比之靈敏度選用對基樁分析之影響誤差,有助日後於液化土層設計側向樁基礎和對制定液化土層中耐震基礎設計規範。

    As the weak soil layer of Taiwan offshore region is easily to be liquefied induced by earthquake and also lateral forces such as wind, wave and ocean current, the foundation of offshore wind turbine in Taiwan should provide enough lateral force resistant. This study analyzed the change of pile body deflection, maximum rotation angle and moment by using various p-y curved modified method combined with the specification of foundation design issued in Taiwan. Further practical study is to simulate the interaction of pile and liquefied soil layer under turbine No.2 in Changhua Fuhai offshore wind farm in Taiwan. In addition, by using Chang, Shu-Yu (2015) excess pore water ratio modifying method as reference, a new modified method is established in this study. This method is able to simulate the behavior of pile under a great depth of liquefied soil layer reasonably.

    摘要 I Extended Abstract II 誌謝 X 目錄 XI 圖目錄 XV 表目錄 XXIV 第一章 緒論 1 1.1研究背景 1 1.2研究目的與方法 2 1.3論文內容 2 第二章 文獻回顧 3 2.1基樁承受側向荷重分析法 3 2.1.1彈性分析法 4 2.1.2地盤反力分析法 6 2.1.3有限元素法 11 2.1.4 p-y曲線分析法 11 2.2土壤液化 14 2.2.1土壤液化定義 15 2.2.2土壤液化機制 16 2.2.2土壤液化的影響因素 18 2.3 土壤液化潛能評估方法 19 2.3.1新日本道路橋簡易經驗法(NJRA法) 20 2.3.2 雙曲線函數法 (HBF法) 24 2.3.3液化潛能範圍 29 第三章 分析方法 31 3.1砂土p-y曲線 31 3.1.1 API砂土 31 3.1.2 Reese 砂土 34 3.1.3 Rollins液化砂土 40 3.2 黏土p-y曲線 42 3.2.1軟弱黏土 42 3.2.2含自由水之堅硬黏土層 47 3.2.3不含自由水之堅硬黏土層 52 3.3超額孔隙水壓之應用與修正法 55 3.3.1 超額孔隙水壓力激發之行為 55 3.3.2不同液化程度下之p-y曲線模型思考與分析流程 56 3.3.3 Marcuson和Hynes經驗孔壓關係 58 3.3.4超額孔隙水壓修正法 60 3.4 建立新修正公式與分析流程 68 3.4.1分析流程 68 第四章 福海離岸風力發電計畫 73 4.1場址介紹 73 4.2現地土層資料 74 4.3土壤液化潛能分析 78 4.4考量淘刷影響 80 4.5程式模擬分析 82 4.5.1 LPILE Plus v5.0與GROUP7.0程式介紹 82 4.5.2場址設計基本資料 84 第五章 案例分析結果與討論 89 5.1利用假設土層分析液化土層深度對兩種修正法之影響結果 89 5.2變更土層地盤反力係數k值分析 97 5.3以《福海離岸風力發電計畫》為實際案例分析 105 5.4分析超額孔隙水壓比ru之靈敏度之影響 118 第六章 結論與建議 132 6.1結論 132 6.2建議 133 參考文獻 135

    1. 日本建築學會(2001),建築基礎構造設計指針。
    2. 日本道路協會(2012),道路橋示方書‧同解說,V耐震設計篇。
    3. 內政部(2001),建築技術規則建築構造編,建築物基礎構造設計規
    範含解說。
    4. 內政部(2011),建築物耐震設計規範及解說。
    5. 內政部(2018),建築技術規則修正草案。
    6. 肖雄(2014),「運用p-y曲線分析基樁在可液化砂土之行為」,國
    立成功大學土木工程研究所,碩士論文。
    7. 莊明仁(2001),「基樁承受側向荷重之反應分析」,國立成功大學
    土木工程研究所,博士論文。
    8. 范嘉程(1997),「承受側向力之群樁分析」,地工技術,第66期,
    第85-96頁。
    9. 范仲軒(2015),「應用p-y曲線分析離岸風機單樁基礎於可液化海
    床砂質土壤之行為」,國立成功大學土木工程研究所,碩士論文。
    10.倪勝火(1999),「現場土層液化評估法」。
    11.陳俶季、吳清裕(1988),「飽和砂土在反覆荷重下之孔隙水壓變化
    與液化潛能」,第十屆海洋工程研討會論文集,頁599-615。
    12.張書瑜(2016),「p-y曲線應用砂土層離岸風機群樁基礎之行為分
    析」,國立成功大學土木工程研究所,碩士論文。
    13.葉健輝(2006),「液化地盤樁基之靜力分析模式研究」,淡江大學
    土木工程研究所,碩士論文。
    14.黎杰侖(2006),「沖刷樁基承受側向載重之變位分析」,國立成功
    大學土木工程研究所,碩士論文。
    15.練詠莊、黃迪瑩、曾韋禎、何玉玲、郭玉樹(2012),「離岸風機單
    樁基礎側向變形分析」,第三十四屆海洋工程研討會論文集,台
    南,頁863-868。
    16.簡連貫、邱淑宜、馮宗緯、林俶寬(2014),「離岸風力計畫海域大
    地工程調查~以福海離岸風場為例」,地工技術,第142期,頁59-
    68 。
    17.American Petroleum Institute. (2002). “Recommended
    practice for planning, designing, and constructing
    fixed offshore platforms.” API Report No. 2A-WSD, API,
    Houston.
    18. Ashour, M., and Norris, G. (2003). “Lateral loaded
    pile response in liquefiable soil.” Journal of
    Geotechnical and Geoenvironmental Engineering, ASCE,
    Vol. 129, No. 6, pp. 404-414.
    19. Ashour, M., Norris, G., and Pilling, P. (1998).
    “Lateral loading of a pile in layered soil using the
    strain wedge model.” Journal of Geotechnical and
    Geoenvironmental Engineering, ASCE, Vol. 124, No. 4,
    pp. 303-315.
    20. Banerjee, P.K., and Davies, T.G. (1978). “The
    behavior of axially and laterally loaded single piles
    embedded in non-homogeneous soils.” Geotechnique,
    Vol. 28, No. 3, pp. 309-326.
    21. Castro, G., and Poulos, S.J. (1977). “Factors
    affecting liquefaction and cyclic mobility.” Journal
    of the Geotechnical Engineering Division, ASCE, Vol.
    103, No. GT6, pp. 501-516.
    22. Chang, W.J., Rathje, E.M., Stokoe II, K.H., and
    Hazirbaba, K. (2007). “In situ pore-pressure
    generation behavior of liquefiable sand.” Journal of
    Geotechnical and Geoenvironmental Engineering, ASCE,
    Vol. 133, No. 8, pp. 921-931.
    23. Chang, W.J. (2014). “Liquefaction analysis of TGC-
    Fuhai windfarm.” Research Report, Department of Civil
    Engineering, National Cheng Kung University, Tainan,
    Taiwan.
    24. Chang, B.J., and Hutchinson, T.C. (2013).
    “Experimental evaluation of p-y curves considering
    development of liquefaction.” Journal of Geotechnical
    and Geoenvironmental Engineering, ASCE, Vol. 139, No.
    4, pp. 577-586.
    25. Dash, S.R., Bhattacharya, S., Blakeborough, A., and
    Hyodo, M. (2008). “p-y curve to model lateral
    response of pile foundation in liquefied soils.” The
    〖14〗^th World Conference on Earthquake Engineering,
    October 12-17, Beijing, China.
    26. De Alba, K., Chan, C., and Seed, H.B. (1975).
    “Determination of soil liquefaction characteristics
    by large-scale laboratory tests.” EERC 75-14,
    Berkeley, California.
    27. Douglas, D.I., and Davis, E.H. (1964). “The movement
    of buried footings due to moment and horizontal load
    and the movement of anchor plates.” Geotechnical
    Engineering, ICE, Vol. 14, No.2, pp. 115-132.
    28. Franke, K.W., and Rollins, K.M. (2013). “Simplified
    hybrid p-y spring model for liquefied soils.” Journal
    of Geotechnical and Geoenvironmental Engineering,
    ASCE, Vol. 139, No. 4, pp. 564-576.
    29. Hetenyi, M. (1946). Beams on Elastic Foundations,
    University of Michigan Press, Michigan.
    30. Ishihara, K. (1985). “Stability of natural deposits
    during earthquakes.” Proc., 〖11〗^th International
    Conference on Soil Mechanics and Foundation
    Engineering, Vol. 1, Rotterdam, pp. 321-376.
    31. Ishihare, K. (1993). “Liquefaction and Flow Failure
    During Earthquakes.” Geotechnique, Vol. 43, Issue 3,
    pp. 351-451.
    32. Iwasaki, T., Arakawa, T., and Tokida, K. (1982).
    “Simplified procedures for assessing soil
    liquefaction during earthquakes.” Soil Dynamics and
    Earthquake Engineering Conference, Southamption, pp.
    925-939.
    33. Juirnarongrit, T., and Ashford, S.A. (2006). “Soil-
    pile response to blast-induced lateral spreading II:
    analysis and assessment of the p-y method.” Journal
    of Geotechnical and Geoenvironmental Engineering,
    ASCE, Vol. 132, No. 2, pp. 163-172.
    34. Kramer, S.L. (1996). Geotechnical Earthquake
    Engineering. Prentice-Hall International Series in
    Mechanics, First Edition, pp.348-422.
    35. Liu, L., and Dobry, R. (1995). “Effect of
    liquefaction on lateral response of piles by
    centrifuge model tests.” NCEER Bulletin, Vol. 9, No.
    1, p. 8.
    36. Matlock, H., and Reese, L.C. (1960). “Generalized
    solution for laterally loaded piles.” Journal of Soil
    Mechanics and Foundations Division, ASCE, Vol. 86,
    No. SM5, pp. 1220-1246.
    37. Mcvay, M., Casper, R., and Shang, T. (1995). “Lateral
    response of three-row groups in loose to dense sands
    at 3D and 5D pile spacing.” Journal of Geotechnical
    Engineering, ASCE, Vol. 121, No. 5, pp. 436-441.
    38. Mcvay, M., Zhang, L., Molnit, T., and Lai, P. (1998).
    “Centrifuge testing of large laterally loaded pile
    groups in sands.” Journal of Geotechnical and
    Geoenvironmental Engineering, ASCE, Vol. 124, No. 10,
    pp. 1016-1026.
    39. Mindlin, R.D. (1936). “Forces at a point in the
    interior of semi-infinite solid.” Physics, Vol. 7,
    pp. 195-202.
    40. Mokwa, R.L., and Hon, J.M.D. (2003). “Rotational
    restraint of pile caps during lateral loading.”
    Journal of Geotechnical and Geoenvironmental
    Engineering, ASCE, Vol. 129, No. 9, pp. 829-837.
    41. O’Neill, M.W., and Murchison, J. M. (1983). “An
    evaluation of p-y in sands.” Research Report No.GT-
    DF02-83, Department of Civil Engineering, University
    of Houston, Houston, Texas.
    42. Poulos, H.G. (1971a). “Behavior of laterally loaded
    piles: I-single pile.” Journal of the Soil Mech. And
    Found. Engineering Division, Proceedings of the
    American Society of Civil Engineers, Vol. 97, No.
    SM5, pp. 711-731.
    43. Poulos, H.G. (1971b). “Behavior of laterally loaded
    piles: II-group pile.” Journal of the Soil Mech. And
    Found. Engineering Division, Proceedings of the
    American Society of Civil Engineers, Vol. 97, No.
    SM5, pp. 733-751.
    44. Poulos, H.G., and Davis, E.N. (1980). Pile Foundation
    Analysis and Design, John Wiley Sons, New York.
    45. Reese, L.C., Cox, W.R., and Koop, F.D. (1974).
    “Analysis of laterally load piles in sand.”
    Proceedings of 5th Annual Offshore Technology
    Conference, Houston, Texas, Vol. II, pp. 473-485.
    46. Reese, L.C., Cox, W.R., and Koop, F.D. (1975). “Field
    testing and analysis of laterally loaded piles in
    stiff clay.” Proceedings, 7th Offshore Technology
    Conference, Houston, Texas, Vol. II, pp. 672-690.
    47. Reese, L.C., and Welch, R.C. (1975). “Laterally
    loading of deep foundations in stiff clay.” Journal
    of the Geotechnical Engineering Division, ASCE, Vol.
    101, No. GT7, pp. 633-649.
    48. Rollins, K.M., Gerber, T.M., Dusty, L.J., and
    Ashford, S.A. (2005). “Lateral resistance of a full-
    scale pile group in liquefied sand.” Journal of
    Geotechnical and Geoenvironmental Engineering, ASCE,
    Vol. 131, No. 1, pp. 115-125.
    49. Seed, H.B., and Idriss, I.M. (1971). “Simplified
    procedure for evaluating soil liquefaction
    potential.” Journal of the Soil Mechanics and
    Foundations Division, ASCE, Vol. 97, No. SM9, pp.
    1249-1273.
    50. Seed, H.B., Martin, P.P., and Lysmer, J. (1975). “The
    generation and dissipation of pore water pressure
    during soil liquefaction.” Report No. EERC 75-26,
    Earthquake Research Center, University of California,
    Berkeley, California.
    51. Seed, H.B., and Idriss, I.M. (1982). “Ground motions
    and soil liquefaction during earthquakes.” Monograph
    Series No. 5, Earthquake Engineering Research
    Institute, Berkeley, CA, USA.
    52. Wang, S.T., and Reese, L.C. (1998). “Design of pile
    foundation in liquefied soils.” Geotechnical
    Earthquake Engineering and Soil Dynamics III, pp.
    1331-1343.
    53. Winkler, E. (1867). Die Lehre Von Elastizitat Und
    Festigkert (On Elasticity and Fixity ), Prague.

    無法下載圖示 校內:2022-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE