簡易檢索 / 詳目顯示

研究生: 林煒程
Lin, Wei-chen
論文名稱: 相對論效應對副磁暴高能粒子傳輸的影響
Relativistic Effect on Substorm Energetic Particle Injection
指導教授: 陳秋榮
Cheng, Chio-zong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 37
中文關鍵詞: 粒子傳輸現象相對論效應同步軌道地球磁層高能粒子副磁暴
外文關鍵詞: energetic particle, geosynchronous orbit, relativistic effect, relativistic particle, magnetosphere, substorm, particle transport, particle injection
相關次數: 點閱:141下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,基於Zaharia et al. [2000]的古典電磁脈衝模型,我們使用一個相對論粒子運動模型以模擬副磁暴發生時同步軌道衛星觀測到的dispersionless energetic particle injection現象,並討論相對論效應對高能粒子傳輸的影響。在相對論模型中,粒子的飄移運動、緩漸不變量和粒子磁矩皆與古典模型[Zaharia et al., 2000]不同。與先前的古典模型[Zaharia et al., 2000]相比,我們的數值模擬結果與觀測資料較符合,而我們的結果也顯示在同步軌道發生的dispersionless energetic particle injection是被電磁脈衝由<10RE的位置傳輸而來的粒子所造成,與古典模型的結果(<9Re) [Zaharia et al., 2000]略為不同。我們也完成在 L=3.5 的電子流量模擬,討論不同的脈衝參數對於粒子傳輸的影響和電磁脈衝傳輸粒子至該處的可能性,以了解是否此電磁脈衝模型可應用於了解磁暴時,在 L=3.5 處高能粒子流量增加的可能性。模擬結果顯示當脈衝速度降低或脈衝經度之寬度增加時,將能傳輸更多粒子到 L=3.5 處。

    In this study, based on a classical electromagnetic pulse model [Zaharia et al., 2000], we proposed a relativistic particle motion model to simulate dispersionless energetic particle injection observed by geosynchronous satellites associated with substorms, and discuss the relativistic effect on particle injection. In our relativistic particle motion model, the particle drift motion and the adiabatic invariant, particle magnetic moment, are different from the classical model [Zaharia et al., 2000]. Our numerical simulation results are in better agreement with the observation data in comparison with the previous results by Zaharia et al. [2000]. In particular, our results show that dispersionless energetic particle injection at geosynchronous orbit is due to the particles swept by the EM pulse from the distance less than 10Re, which is slightly longer than the previous result (<9Re) [Zaharia et al., 2000]. We had also performed numerical simulations to study energetic particle injection at L=3.5 to discuss the effect of different pulse parameters on particle injection. Our modeling results show that when the pulse velocity is reduced and the pulse longitudinal width is increased, more particles can be swept to L=3.5 to account for the observed enhancement of energetic particle fluxed during substorms.

    目錄 Abstract I 摘要 II 致謝 III 1. 緒論 1 1.1. 副磁暴與高能粒子傳輸 1 1.2. 以往的相關研究 2 1.3. 研究動機與目的 3 2. 理論模型 4 2.1. 電磁脈衝模型 4 2.2. 古典電動力學的粒子加速機制 6 2.3. 相對論粒子電動力學 8 2.4. 相對論電動力學的粒子加速機制 9 3. 數值模擬 12 3.1. 粒子在電磁脈衝中的運動 12 3.2. 粒子在脈衝中運動軌跡的討論 15 3.3. 粒子的流量計算 16 3.4. 電子流量數值模擬的驗證 20 4. 相對論模型模擬結果和討論 21 4.1. 相對論模型在同步軌道的電子流量模擬 21 4.2. 相對論模型在 L=3.5 的電子流量模擬 26 5. 總結與討論 30 6. 參考文獻 33 7. 圖表目錄 34 附錄 粒子最遠初始位置的解析解 36

    Belian, R., D. Baker, P. Higbie, and E. Hones (1978), High resolution energetic particle measurements at 6.6 Re, 2, High-energy proton drift echoes, J. Geophys. Res., 83, 4857-4862.

    Bogott, F., and F. Mozer, (1974), Drifting energetic particle bunches observed on ATS 5, J. Geophys. Res., 79, 1825.

    Cheng, C. Z. (2004), Physics of substorm growth phase, onset, and dipolarization, Space Sci. Rev., this issue.

    Lanzerotti, L., C. Roberts, and W. Brown (1967), Temporal variations in the electron flux at synchronous altitudes, J. Geophys. Res., 72, 5893.

    Li, X., D. Baker, M. Temerin, G. Reeves, and R. Belian (1998), Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms, Geophys. Res. Lett., 25, 3763.

    Li, X., T. E. Sarris, D. Baker, et al. (2003), Simulation of energetic particle injections associated with substorm on August 27, Geophys. Res. Lett., 30(1), 1004.

    Meredith, N. P., R. B. Horne, R. H. A. Iles, et al. (2002), Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus, J. Geophys. Res., 107(A7), 1144.

    Northrop, T. (1963), The Adiabatic Motion of Charged Particles, Wiley-Interscience, New York.

    Roederer, J. (1970), Dynamics of Geomagnetically Trapped Radiation, Springer-Verlag, New York.

    Spanswick, E., E. Donovan, W. Liu, et al. (2009), Global observations of substorm injection region evolution: 27 August 2001, Ann. Geophys., 27, 2019-2025.

    Vasyliunas, V. (1968), A survey of low-energy electrons in the evening sector magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839.

    Zaharia, S., C. Z. Cheng, and J. R. Johnson (2000), Particle transport and energization associated with substorms, J. Geophys. Res., 105, 18741.

    下載圖示 校內:立即公開
    校外:2009-07-06公開
    QR CODE