簡易檢索 / 詳目顯示

研究生: 林宇軒
Lin, Yu-Hsuan
論文名稱: 選擇性雷射熔融法應用於不鏽鋼316L之VOF模型建立與熔池流動分析
VOF Modeling and Flow Behavior Analysis on Molten Pool during Selective Laser Melting of Stainless Steel 316L
指導教授: 温昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 97
中文關鍵詞: 選擇性雷射熔融不鏽鋼316LVOF模型質量蒸發反衝壓力馬蘭格尼力
外文關鍵詞: Selective Laser Melting, stainless steel 316L, VOF model, mass evaporation, recoil pressure, Marangoni force
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為模擬選擇性雷射熔融法以單層單軌掃描不鏽鋼316L基板與粉末,觀察特定截面之沉積流動情形與相關力作用之分析。使用商用軟體ANSYS FLUENT建立二維數值模型,並加入熱焓多孔法和VOF模型,模擬固液共存的熔融區以及液氣間體積分率的變化,考慮表面的金屬蒸發現象,加上馬蘭格尼效應、反衝壓力等作用力,預測金屬在熔化後自由表面的流動行為與沉積形狀。
    研究首先探討暫態過程中流場與溫度場的發展,發現加工前期由於熔池還在成形,流動現象較不明顯;到了中期,表面溫度過蒸發點後,馬蘭格尼力與反衝壓力會主導其流動行為,使熔池產生像是被雷射衝開的現象,並藉由表面張力將液體拉回;而後期雷射逐漸遠離後,沉積慢慢冷卻成形。接著比較有無考慮質量蒸發對沉積結果的差異,顯示出熔覆情形會受到表面質量蒸發的影響,使得沉積高度減少但寬度增加,並且在高度方面的變化更為明顯。再來是針對不同的雷射與粉末加工參數進行模擬,藉由本研究的模型可以更加了解加工參數與熔覆結果的相關性,從中找出造成接合度與熔覆情形較差的原因,並且可以在實際加工前預測沉積形狀的外表輪廓,有利於加工前的決策與評估。最後,分別觀察反衝壓力與馬蘭格尼力對暫態流動的影響,反衝壓力可以抑制住因高溫造成的馬蘭格尼效應往中間流動之情形,並讓熔池可以快速往外流動發展,使得熱擴散更加均勻;馬蘭格尼力則是加強熔池表面以及內部的流動情形,並配合反衝壓力讓熔池的流動現象更加劇烈,溫度場也得以藉此效果達到更好的擴散。上述這些分析可以更加了解熔池的熱與質量傳遞情形,以及如何改變流動現象與沉積結果。

    In this research, a two-dimensional model is established to simulate the flow behaviors on molten pool during Selective Laser Melting (SLM) of stainless steel 316L. The VOF model is used to capture the free surface. A Gaussian beam is used to melt the powder layer and substrate. Furthermore, mass removal through evaporation, Marangoni force, recoil pressure, and surface tension are considered simultaneously to predict the flow behaviors of the molten pool and the shape of cladding.
    The study first discusses the change in the flow field and temperature field of the molten pool in the transient process of the heating, and then discovers that the molten pool is still developing in the early stage of melting. In the middle stage, Marangoni force and recoil pressure dominate the flow, and push the metal away from center to the edges of the molten pool. In the late stage, the metal cools down and the cladding forms after the laser leaves. Then, the case which considers mass loss through evaporation has been compared with another case that ignores the mass loss. The results show that considering mass loss through evaporation increase the height and decrease the width of cladding. The following topic compares the results from different processing parameters, and finds out the relationship between cladding and the parameters, so the shape of cladding could be predicted before processing. Finally, the change in flow behavior caused by recoil pressure and Marangoni force can be observed, respectively. The results show that recoil pressure can prevent the liquid from flowing to center which is caused by Marangoni force, and the heat diffusion is more homogeneous. Marangoni force can strengthen the flow in the molten pool, and also make the heat diffusion much better in temperature field.

    摘要 I 誌謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 符號說明 XX 第一章 緒論 1 1-1 研究背景 1 1-1.1 積層製造 1 1-1.2 選擇性雷射熔融法 2 1-2 文獻回顧 5 1-2.1 金屬粉末層 5 1-2.2 馬蘭格尼效應 8 1-2.3 反衝壓力與蒸發現象 10 1-2.4 零件成型品質 10 1-2.5 選擇性雷射熔融法 14 1-3 研究動機與目的 16 1-4 全文架構 17 第二章 基礎理論 18 2-1 雷射基礎理論 18 2-1.1 雷射作用原理 18 2-1.2 Nd-YAG雷射介紹 20 2-1.3 高斯雷射能量分布 23 2-2 不鏽鋼316L材料介紹 26 2-3 熱傳理論介紹 28 2-3.1 相變化 28 2-3.2 熱輻射與熱對流損失 31 2-3.3 反衝壓力與蒸發熱損失 31 2-4 VOF模型 33 第三章 數值分析與研究方法 35 3-1 材料之熱物性質 35 3-2 物理模型 42 3-2.1 基本假設 42 3-2.2 統御方程式 45 3-2.3 初始條件與邊界條件 49 3-3 數值模擬設定流程與分析方法 51 3-4 物理模型測試 51 3-4.1 網格獨立性測試 52 3-4.2 時間步伐測試 52 3-5 幾何驗證 57 第四章 結果與討論 59 4-1 暫態流動行為 59 4-2 有無考慮質量蒸發對沉積形狀之影響 64 4-3 雷射加工參數對沉積形狀之影響 65 4-4 粉末加工參數對沉積形狀之影響 75 4-5 反衝壓力對暫態流動之影響 79 4-6 馬蘭格尼力對暫態流動之影響 82 第五章 結論與未來工作 88 5-1 結論 88 5-2 未來工作 90 參考文獻 91

    [1] ASTM International., “Standard Terminology For Additive Manufacturing Technologies”, Designation: F2792 − 12a, 2013.
    [2] S. Bremen, W. Meiners, and A. Diatlov, “Selective laser melting: a manufacturing technology for the future,” Laser Technik Journal, Vol. 9, No. 2, pp. 33-38, 2012.
    [3] P. Yuan, D. Gu, and D. Dai, “Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites,” Journal of Materials and Design, Vol. 82, pp. 46-55, 2015.
    [4] K. Kempen, L. Thijs, B. Vrancken, S. Buls, J. Van Humbeeck, and J.P. Kruth, “Lowering thermal gradients in Selective Laser melting by pre-heating the baseplate,” Solid Freeform Fabrication Symposium Proceedings, 2013.
    [5] M. Mani, S. Feng, L. Brandon, A. Donmez, S. Moylan, and R. Fesperman, “Measurement science needs for real-time control of additive manufacturing powder-bed fusion processes,” Additive Manufacturing Handbook, CRC Press, pp. 629-652, 2017.
    [6] I. Yadroitsev, P. Bertrand, and I. Smurov, “Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks,” Rapid Prototyping Journal, 2012.
    [7] A.B. Spierings and G. Levy, “Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades,” Solid Freeform Fabrication Symposium Proceedings, pp. 342-353, 2009.
    [8] C. Körner, E. Attar, and P. Heinl, “Mesoscopic simulation of selective beam melting processes,” Journal of Materials Processing Technology, Vol. 211, No. 6, pp. 978-987, 2011.
    [9] J. Zhou, Y. Zhang, and J.K. Chen, “Numerical simulation of random packing of spherical particles for powder-based additive manufacturing,” Journal of Manufacturing Science and Engineering, Vol. 131, pp. 031004, 2009.
    [10] M. Rombouts, L. Froyen, and A.V. Gusarov, E.H. Bentefour, and C. Glorieux, “Light extinction in metallic powder beds: correlation with powder structure,” Journal of Applied Physics, Vol. 98, pp. 013533, 2005.
    [11] F. Thummler and R. Oberacker, “An introduction to powder metallurgy,” Oxford Science Publications, 1993.
    [12] L. Han, F. W. Liou, and S. Musti, “Thermal behavior and geometry model of melt pool in laser material process,” Journal of Heat Transfer, Vol. 127, No. 9, pp. 1005-1114, 2005.
    [13] C. R. Heiple, “Mechanism for minor element effect on GTA fusion zone geometry,” Welding Journal, Vol. 61, No. 4, pp. 97-102, 1982.
    [14] K. C. Mills, B. J. Keene, R. F. Brooks, and A. Shirali, “Marangoni effects in welding,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical Physical and Engineering Sciences, Vol. 356, No. 1739, pp. 911-925, 1998.
    [15] G. Tsotrid, H. Rother, and E.D. Hondros, “Marangoni flow and the shapes of laser-melted pools,” The Science of Nature, Vol. 76, No. 5, pp. 216-218, 1989.
    [16] S. P. Harimkar, A. N. Samant, and N. B. Dahotre, “Temporally evolved recoil pressure driven melt infiltration during laser surface modifications of porous alumina ceramic,” Journal of Applied Physics, Vol. 101, No. 5, pp. 054911, 2007.
    [17] Y. Liu, Y. Yang, S. Mai, D. Wang, and C. Song, “Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder,” Materials and Design, Vol. 87, pp. 797-806, 2015.
    [18] C. J. Knight, “Theoretical modeling of rapid surface vaporization with back pressure,” AIAA Journal, Vol. 17, No. 5, pp. 519-523, 1979.
    [19] K. Mundra and T. Debroy, “Calculation of weld metal composition change in high-power conduction mode carbon dioxide laser-welded stainless steels,” Metallurgical Transactions B, Vol. 24, No. 1, pp. 145-155, 1993.
    [20] T. H. C. Childs, C. Hauser, and M. Badrossamay, “Mapping and modelling single scan track formation in direct metal selective laser melting,” CIRP Annals, Vol. 53, No. 1, pp. 191-194, 2004.
    [21] T. H. C. Childs, C. Hauser, and M. Badrossamay, “Selective laser sintering (melting) of stainless and tool steel powders: experiments and modelling,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 219, No. 4, pp. 339-357, 2005.
    [22] R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, and W. Jiang, “Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting,” Applied Surface Science, Vol. 256, No. 13, pp. 4350-4356, 2010.
    [23] X. Shi, S. Ma, C. Liu, and Q. Wu, “Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks,” Optics and Laser Technology, Vol. 90, pp. 71-79, 2017.
    [24] W. Di, Y. Yongqiang, S. Xubin, and C. Yonghua, “Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM,” The International Journal of Advanced Manufacturing Technology, Vol. 58, No. 9, pp. 1189-1199, 2012.
    [25] W. Xi, B. Song, Y. Zhao, T. Yu, and J. Wang, “Geometry and dilution rate analysis and prediction of laser cladding,” The International Journal of Advanced Manufacturing Technology, Vol. 103, No. 9, pp. 4695-4702, 2019.
    [26] P. Yuan, D. Gu, and D. Dai, “Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites,” Materials and Design, Vol. 82, pp. 46-55, 2015.
    [27] C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brooks, and M. M. Attallah, “On the role of melt flow into the surface structure and porosity development during selective laser melting,” Acta Materialia, Vol.96, pp. 72-79, 2015.
    [28] Y. Tian, L. Yang, D. Zhao, Y. Huang, and J. Pan, “Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel,” Journal of Manufacturing Processes, Vol. 58, pp. 964-974, 2020.
    [29] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. Golabi, “Finite Element Simulation of Selective Laser Melting process considering optical penetration depth of laser in powder bed,” Materials and Design, Vol. 89, pp. 255-263, 2016.
    [30] 黃冠霖, “選擇性雷射熔融法應用於不鏽鋼316L金屬粉末之非等向增強性熱傳導模型建立及熔池熱分析,” 國立成功大學機械工程研究所碩士論文, 2020.
    [31] 蕭永豪, “選擇性雷射熔化製程參數之不鏽鋼316L熔池模擬與實驗熱分析,” 國立成功大學機械工程研究所博士論文, 2021.
    [32] R. Klein, “Laser welding of plastics,” Wiley-VCH, 2011.
    [33] 楊隆昌, “雷射發展的趨勢與應用,” 中工高雄會刊, Vol. 22, pp. 23-33, 2013.
    [34] 劉國基, 張百齊, “Nd-YAG雷射的加工應用,” 遠東學報, Vol. 1, No. 19, 2001.
    [35] J. Ready, “Effects of High-power Laser Radiation,” Elsevier, 2012.
    [36] 楊國輝, 黃宏彥, “雷射原理與量測概論,” 五南圖書出版有限公司, first version, 2001.
    [37] 許阿娟, 朱嘉雯, 林桂芬, 陳志隆,“光學系統設計進階篇-第九章 高斯光束,” available: http://energy.phys.ncku.edu.tw/optics/book_2/b2_09_2002_incomplete.pdf.
    [38] “Gaussian Beam Optics,” available: http://www.cvimellesgriot.com/.1919–1928, August 1997.
    [39] “Stainless steel,” available: https://en.wikipedia.org/wiki/Stainless_steel
    [40] 陳瑞凱, 詹益愷, “不鏽鋼種類與材質磁性的關係,” 國立清華大學.
    [41] T. Bell, “Type 316 and 316L stainless steels,” available: https://www.thoughtco.com, 2020.
    [42] B. V. L'vov, “Thermal decomposition of solids and melts: new thermochemical approach to the mechanism, kinetics and methodology,” Springer Science and Business Media, Vol. 7, 2007.
    [43] ANSYS, “Ansys Fluent. 15.0 Theory Guide,” ANSYS Inc., 2013.
    [44] V. R. Voller, and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer, Vol. 30, No. 8, pp. 1709-1719, 1987.
    [45] H. Shmueli, G. Ziskind, and R. Letan, “Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments,” International Journal of Heat and Mass Transfer, Vol. 53, No. 19-20, pp. 4082-4091, 2010.
    [46] M. V. Allmen, and A. Blatter, “Laser-beam interactions with materials: physical principles and applications,” Springer Science and Business Media, Vol. 2, 2013.
    [47] A. Klassen, T. Scharowsky, and C. Körner, “Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods,” Journal of Physics D: Applied Physics, Vol. 47, No. 27, pp. 275303, 2014.
    [48] B. V. L'vov, “Thermal decomposition of solids and melts: new thermochemical approach to the mechanism, ” Kinetics and Methodology vol. 7: Springer Science & Business Media, 2007.
    [49] A. A. Samokhin, “First-order phase transitions induced by laser radiation in absorbing condensed matter,” Proceedings of the Institute of General Physics, Vol. 13, pp. 1-161, 1990.
    [50] B. JP, H. Duval, M. Ritchie, A. Mitchell, and D. Ablitzer, “Evaporation of Fe and Cr from induction-stirred austenitic stainless steel. Influence of the inert gas pressure,” ISIJ International, Vol. 41, No. 7, pp. 696-705, 2001.
    [51] K. Hirano, R. Fabbro, and M. Muller, “Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure,” Journal of Physics D: Applied Physics, Vol. 44, No. 43, pp. 435402, 2011.
    [52] K. L. Walter, “Langmuir vaporization technique for liquid phase vapor pressure and partial pressure measurements: lead and indium-lead systems,” Iowa State University ProQuest Dissertations Publishing, 1972.
    [53] S. I. Anisimov, “Vaporization of metal absorbing laser radiation,” In 30 Years Of The Landau Institute—Selected Papers, pp. 14-15, 1996.
    [54] Z. Chen, Y. Xiang, Z. Wei, P. Wei, B. Lu, L. Zhang, and J. Du, “Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification,” Applied Physics A, Vol. 124, No. 4, pp. 1-16, 2018.
    [55] K. C. Mills, “Recommended values of thermophysical properties for selected commercial alloys,” Woodhead Publishing, 2002.
    [56] C. Tang, J. L. Tan, and C. H. Wong, “A numerical investigation on the physical mechanisms of single track defects in selective laser melting,” International Journal of Heat and Mass Transfer, Vol. 126, pp. 957-968, 2018.
    [57] T. C. Chawla, D. L. Graff, R. C. Borg, G. L. Bordner, D. P. Weber, and D. Miller, “Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis,” Nuclear Engineering and Design, Vol. 67, No. 1, pp. 57-74, 1981
    [58] Y. Tian, L. Yang, D. Zhao, Y. Huang, and J. Pan, “Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel,” Journal of Manufacturing Processes, Vol. 58, pp. 964-974, 2020.
    [59] Y. M. Zhang, C. W. J. Lim, C. Tang, and B. Li, “Numerical investigation on heat transfer of melt pool and clad generation in directed energy deposition of stainless steel,” International Journal of Thermal Sciences, Vol. 165, pp. 106954, 2021.
    [60] S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Materialia, Vol. 108, pp. 36-45, 2016.
    [61] Y. Zhang, and J. Zhang, “Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata,” Additive Manufacturing, Vol. 28, pp. 750-765, 2019.
    [62] A. B. Spierings, N. Herres, and G. Levy, “Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts,” Rapid Prototyping Journal, 2011.
    [63] J. D. Trejos, L. A. Reyes, C. Garza, P. Zambrano, and O. Lopez-Botello, “ Numerical modeling of thermal anisotropy on a selective laser melting process,” Rapid Prototyping Journal, 2020.
    [64] D. Moser, S. Pannala, and J. Murthy, “Computation of effective radiative properties of powders for selective laser sintering simulations,” JOM: The Journal of The Minerals, Metals & Materials Society, Vol. 67, No. 5, pp. 1194-1202, 2015.
    [65] C. Panwisawas, C. L. Qiu, Y. Sovani, J. W. Brooks, M. M. Attallah, and H. C. Basoalto, “On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting,” Scripta Materialia, Vol. 105, pp. 14-17, 2015.
    [66] Z. S. Saldi, “Marangoni driven free surface flows in liquid weld pools,” Delft University of Technology, Doctoral thesis, The Netherlands, 2012.

    無法下載圖示 校內:2027-06-30公開
    校外:2027-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE