簡易檢索 / 詳目顯示

研究生: 李佩璇
Lee, Pei-Hsuan
論文名稱: 高功率發光二極體之亮度特性
Luminance Characteristics of High Power Light Emitting Diodes
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 124
中文關鍵詞: 發光二極體接面溫度熱阻電性實驗法順向偏壓法光通量衰減脈衝偏壓數值模擬ANSYS
外文關鍵詞: Light Emitting Diode (LED), Junction Temperature, Thermal Resistance, Electrical Test Method (ETM), Forward Voltage Method, Luminous Decay, Pulsed Bias, Numerical Simulation, ANSYS
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高功率發光二極體(Light-emitting diode, LED)元件發光效率與可靠度的提高,對環境汙染較小的發光二極體大量被使用在日常生活中,取代傳統的白熾燈泡及日光燈勢必是未來的趨勢。然而,發光二極體的光電轉換效率仍然過低,大部份的輸入能量皆以熱能的形式逸散,造成晶片接面溫度上升。發光二極體的接面溫度(Junction temperature)直接且深遠地影響其輸出特性與元件壽命。因此,準確的量測及評估發光二極體之接面溫度是必須且非常重要的。
    在本論文研究中,透過積分球的光通量實驗,比較量測所得到的光通量,結果發現發光二極體的熱阻值並非影響光通量衰減的主要原因,光通量衰減幅度主要取決於發光二極體晶片隨溫度衰退的外部量子效率。使用有限單元分析軟體ANSYS 12.0建立三維數值模型進行暫態熱傳分析,並且以順向偏壓法分別量測四種不同顏色的LED晶片接面溫度。從暫態模擬可以看到發光二極體隨著點亮時間而溫升,模擬結果與實驗所量測到的溫升曲線具有十分接近的趨勢,其中由模擬所得到以氮化鋁為基板材料模型(紅色與琥珀色)與以藍寶石為基板材料模型(白色與綠色)的熱阻值分別為5.04°C/W與6.88°C/W。另外以電性測試法(又稱為順向偏壓法)對四個不同顏色(紅、綠、白和琥珀色)各二十顆的發光二極體進行接面溫度的量測。由實驗結果可以得知紅、綠、白和琥珀色的熱阻值範圍分別為:3.39~9.57°C/W、6.45~7.94°C/W、6.33~7.97°C/W與3.98~ 8.20°C/W。磷化鋁鎵銦族的發光二極體(紅光與琥珀光)的熱阻值變異性高於氮化銦鎵族的發光二極體(綠光與白光)。
    另外,脈衝偏壓實驗的部分,在操作頻率1k Hz輸入電流工作週期(duty cycle)為80%下,分別對白光與紅光發光二極體施加445.7mA 和 418.4mA的順向電流,發現可以在達到與正常操作相同照度的前提下,分別降低白光與紅光發光二極體元件的溫度1.4°C與2.0°C。因此,白光發光二極體的使用壽命可以增加292個小時,衰減的光通量亦減少0.32%;紅光發光二極體的使用壽命可以增加658個小時,衰減的光通量則可以減少1.00%。本研究發展的方法可用於量測不同顏色發光二極體的熱阻值與光衰,有助於進行先進的產品設計和模組可靠度分析,以提升發光二極體的發光強度與延長使用壽命。所提出的非破壞性量測方式不侷限於特定的元件封裝型式,亦可廣泛地應用在其他的發光二極體模組。

    With the advancement of emitting efficiency and reliability of the high power light-emitting-diode (LED) module, which leads to less environmental pollution, the LED has been applied to a large amount of daily-life illumination and its replacement of traditional incandescent bulbs and fluorescent lamp is believed to be the future trend. However, the electrical-to-optical conversion efficiency of LED is still too low, and most of input power has been dissipated as heat, which results in the increase of junction temperature within the LED chip. The junction temperature of the LED directly and greatly affects its output characteristics and lifetime. Therefore, it is necessary and extremely important that the junction temperature of the LED be measured and evaluated accurately.
    In this study, via the luminous flux experiment in the integrating sphere, the comparison of measurement results shows that the thermal resistance of LED is not the major determinant of its luminous flux decay. Obviously, the luminous flux decay of LED is dependent on the external quantum efficiency of chip material being used. A 3D numerical simulation, based on commercial software ANSYS 12.0, was applied to carry on transient thermal-conduction analysis, and the measurement of diode forward voltage was implemented to estimate the junction temperature of four different LED samples. The simulated temperature for LED model was found to increase with time, while the slug temperature also showed the same trend in simulation and experiment. The simulated thermal resistance were 5.04°C/W and 6.88°C/W for AlN substrate model (red and amber LED) and sapphire substrate model (white and green LED), respectively. The Electrical Test Method (ETM) (also called the forward voltage method) was used to measure the K factor and junction temperature of LEDs with four different colors (red, green, white and amber). Twenty samples for each color. The experimental results show that the ranges of the estimated thermal resistance for red, green, white, and amber LED samples lie between 3.39 to 9.57°C/W, 6.45 to 7.94°C/W, 6.33 to 7.97°C/W, and 3.98 to 8.20°C/W, respectively. The thermal resistance of an AlGaInP-material-based LED (red and amber) reveals higher variability than that of an InGaN-material-based LED (green and white).
    In the pulsed bias experiment on the basis of 80% duty cycle of input current and 1k Hz operation frequency, the input current of 445.7mA and 418.4mA is respectively required in the white and red LED samples to provide the equivalent illuminance as in normal operation. Moreover, the values of the LED slug temperature appeared to be lower 1.4°C and 2.0°C as compared to the results in the normal steady operation. It is found that a white LED which is activated by the form of duty cycle having 292 hours longer life time than by the normal operation, and the decay of luminous flux would be reduced 0.32%. The similar condition has been found in red LED, and 658 hours longer life time can be achieved under duty cycle than normal operation, and the decay of luminous flux would be reduced 1.00%.
    The method developed in this study can be used to measure the thermal resistance and luminous decay of LEDs with different colors, and it is helpful in advanced product designs and module reliability analysis to enhance the light intensity and prolong the lifetime of LEDs. The proposed non-destructive measurement method is not restricted to a particular packaging form, and it can be widely applied to other LED modules as well.

    CONTENTS 摘要......................................................I ABSTRACT................................................III 誌謝.....................................................VI CONTENTS................................................VII LIST OF TABLES...........................................IX LIST OF FIGURES...........................................X NOMENCLATURE............................................XIV CHAPTER 1 INTRODUCTION....................................1 1.1 Research Background...................................1 1.2 Motivation and Objective..............................4 1.3 Literature Review.....................................4 1.4 Sectional Summary.....................................7 CHAPTER 2 PRINCIPLE OF LIGHT EMITTING DIODE...............8 2.1 The Solid-State Lighting..............................8 2.1.1 Overview of Conventional Light Sources..............8 2.1.2 Light Emitting Diodes and Organic Light Emitting Diodes...................................................10 2.2 LED Device Physics...................................11 2.3 Technology and Applications..........................12 2.4 High Power LEDs......................................13 2.5 Thermal Effects of High Power LED Packaging..........15 2.5.1 The Electrical-to-Optical Conversion Efficiency of LED......................................................15 2.5.2 Damages Caused by High Junction Temperature........17 Chapter 3 THERMAL EFFECT AND OPERATION MODE ON LED BRIGHTNESS...............................................19 3.1 Brightness Decay of LED..............................19 3.2 Measurement Equipment................................20 3.2.1 Luminous Flux......................................20 3.2.2 Pulsed Bias........................................22 3.3 Methodology..........................................22 3.3.1 Luminous Flux......................................22 3.3.2 Pulsed Bias........................................23 3.4 Results and Discussions..............................24 3.4.1 Luminous Flux......................................24 3.4.2 Pulsed Bias........................................27 Chapter 4 3D NUMERICAL SIMULATION ON THERMAL CHARACTERISTICS OF HIGH POWER LED........................32 4.1 Finite Element Simulation with ANSYS.................32 4.2 Transient Thermal Analysis...........................33 4.2.1 Numerical Model and Material Properties............34 4.2.2 Boundary Conditions................................35 4.3 Results and Discussions..............................37 Chapter 5 STUDY ON JUNCTION TEMPERATURE OF LIGHT EMITTING DIODE....................................................39 5.1 Measurement Principle................................39 5.1.1 Measurements of Junction Temperature...............39 5.1.2 Principle of Electrical Test Method................41 5.2 Framework and Methodology............................43 5.2.1 The K Factor.......................................43 5.2.2 Junction Temperature and Thermal Resistance of LED.44 5.3 Equipments and Sample preparation....................45 5.4 Results and Discussions..............................46 5.4.1 K Factor...........................................46 5.4.2 Junction Temperature and Thermal Resistance........47 5.4.3 Comparison of Experimental and Simulation Results..49 Chapter 6 CONCLUSIONS AND PROSPECTS......................50 6.1 General Conclusions..................................50 6.2 Suggestions of Further Works.........................52 REFERENCES..............................................108 PUBLICATIONS LIST.......................................122 APPENDIX: CURRICULUM VITAE..............................124

    [1]S. M. Sze, “Semiconductor Devices Physics and Technology 2nd Edition”, John Wiley & Sons, inc., New York, pp. 282-285, 2001.
    [2]A. Zukauskas, S. Shur and R. Gaska, “Introduction to Solid-State Lighting”, John Wiley & Sons, inc., New York, pp. 37-75, 2002.
    [3]T. Whitaker, “LED Market Ready for Accelerated Growth in Lighting, Display Backlights and Automotive Applications”, LEDs Magazine/ Technology and Applications of Light Emitting Diodes, pp.5-8, 2007.
    [4] G. Robert, “LED LCD TV Maker's Roadmap and Market Forecast”, Display- bank, March 30, 2010.
    http://www.displaybank.com/eng/report/report_show.php?id=494
    [5] Cree® XLamp® XR Family LED Reliability, December 2009.
    http://www.cree.com/products/pdf/XLamp_Reliability.PDF
    [6] U.S. Department of Energy, “LED Measurement Series: LED Luminaire Reliability”, http://openpdf.com/ebook/luminaire-pdf.html
    [7] U.S. Department of Energy, “Lifetime of White LEDs”,
    http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/lifetime_white_leds.pdf
    [8] X. A. Cao, S. F. L. Boeuf, L. B. Rowland, C. H. Yan and H. Liu, “Temperature- Dependent Emission Intensity and Energy Shift in InGaN/ GaN Multiple- Quantum-Well Light-Emitting Diodes”, Applied Physics Letters, Volume 82, Issue 21, pp.3614-3616, 2003.
    [9]YEG Opto, “Drivers & Controllers-Lifetime”, A division of the Young Electronics Group, http://www.yegopto.co.uk/DisplayLEDs
    [10]Alliance for Solid-State Illumination Systems and Technologies (ASSIST), ASSIST recommends, “LED Life for General Lighting: Definition of Life”, New York: Lighting Research Center, Rensselaer Polytechnic Institute, Volume 1, Issue 1, 2005.
    [11]G. Murtaza and J. M. Senior, “Method for Extracting Thermally Stable Optical Singals from a CaAlAs LED Source”, IEEE Photonics Technology Letters, Volume 7, No. 5, pp. 479-481, 1995.
    [12]I. Niki, Y. Narukawa, D. Morita, S. sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamata, and T. Mukai, “White LEDs for Solid State Lighting”, Proceedings of SPIE: Third International Conference on Solid State Lighting, San Diego, CA, United States, Volume 5187, pp. 1-9, 2004.
    [13]Y. Gu, N. Narendran, and J. P. Freyssinier, “White LED Performance”, Proceedings of SPIE: Fourth International Conference on Solid State Lighting, Denver, CO, United States, Volume 5530, pp. 119-124, 2004.
    [14]Technology White Paper, “Understanding power LED lifetime analysis”, PHILIPS, 2007,
    http://www.ledjournal.com/images/White_Papers/Philips_Understanding%20Power%20LED%20Lifetime%20Analysis.pdf
    [15]A. A. Bergh, “Bulk Degradation of GaP Red LEDs”, IEEE Transactions on Electron Devices, Volume 18, Issue 3, pp.166-170, 1971.
    [16]R. A. Sigsbee, “Electromigration and Metalization Lifetimes”, Journal of Applied Physics, Volume 44, Issue 6, pp. 2533-2540, 1973.
    [17]A. Neugroschel, “Determination of Lifetimes and Recombination Currents in P-N Junction Solar Cells, Diodes, and Transistors”, IEEE Transactions on Electron Devices, Volume 28, Issue 1, pp. 108-115, 1981.
    [18]G. Ferenczi, “Degradation Induced Formation of Extended Defects in GaP:N LED's”, IEEE Transactions on Electron Devices, Volume 28, Issue 4, pp. 421-424, 1981.
    [19]A. Sugimura, “Band-to-Band Auger Effect on the Output Power Saturation in InGaAsP LED's”, IEEE Journal of Quantum Electronics, Volume 17, Issue 4, pp. 441-444, 1981.
    [20]W. Nakwaski and A. M. Kontkiewicz, “Temperature Distribution in A Light-Emitting Diode During A Pulse Operation”, Electronics Letters, Volume 20, Issue 23, pp. 984-985, 1984.
    [21]W. Nakwaski, “Thermal Properties of the Burrus-Type Light-Emitting Diode: Part I-The Model”, IEEE Transactions on Electron Devices, Volume 33, Issue 7, pp. 889-899, 1986.
    [22]W. Nakwaski, “Thermal Properties of the Burrus-Type Light-Emitting Diode: Part II-The Results”, IEEE Transactions on Electron Devices, Volume 33, Issue 7, pp. 900-907, 1986.
    [23]S. Strite and H. Morkoc, “ GaN AlN and InN A Review”, The Journal of Vacuum Science and Technology B, Micro-electron Process Phenom, Volume 10, No. 4, pp. 1237-1266, 1992.
    [24]T. Egawa, T. Jimbo, and M. Umeno, “Characteristics of InGaN/AlGaN Light-Emitting Diodes on Sapphire Substrates”, Journal of Applied Physics, Volume 82, No. 11, pp. 5816-5821, 1997.
    [25]M. Boroditsky, E. Yablonovitch, “Light-Emitting Diode Extraction Efficiency”, Proceedings of SPIE: Light-Emitting Diodes: Research, Manufacturing, and Applications, San Jose, CA, USA, Volume 3002, pp. 110-118, 1995.
    [26]E. F. Schubert, “High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals”, Physical Review Letters, Volume 78, No. 17, pp. 3294-3297, 1997.
    [27]I. Schnitzer, E. Yablonovitch, C. Caneau, T. Mitter and A. Schere, “30% External Quantum Efficiency from Surface Textured, Thin‐Film Light‐Emitting Diodes”, Applied Physics Letters, Volume 63, No. 16, pp. 2174-2176, 1993.
    [28]I. Schnitzer, E. Yablonovitch, C. Caneau and T. J. Gmitter, “ Ultrahigh Spontaneous Emission Quantum Efficiency, 99.7% Internally and 72% Externally, from AlGaAs/GaAs/AlGaAs Double Heterostructures”, Applied Physics Letters, Volume 62, No. 2, pp. 131-133, 1993.
    [29]Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A Vertikov and A. V. Nurmikko, “A Vertical Cavity Light Emitting InGaN Quantum Well Heterostructure”, Applied Physics Letters, Volume 74, No. 23, pp. 3441-3443, 1999.
    [30]N. Narendran and Y. Gu, “Life of LED-Based White Light Source”, IEEE/ OSA Journal of Display, Volume 1, No.1, pp. 167-171, 2005.
    [31]S. C. Bera, R. V. Singh and V. K. Garg, “Temperature Behavior and Compensation of Light-Emitting Diode”, IEEE Photonics Technology Letters, Volume 17, Issue 11, pp. 2286-2288, 2005.
    [32]L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghesso and E. Zanoni, “Accelerated Life Test of High Brightness Light Emitting Diodes”, IEEE Transactions on Device and Materials Reliability, Volume 8, Issue 2, pp. 304-311, 2008.
    [33]Bardsley Consulting, Navigant Consulting, Inc., Radcliffe Advisors, Inc., SB Consulting, and Solid State Lighting Services, Inc., “Solid-State Lighting Research and Development: Multi-Year Program Plan”, March 2010.
    http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2010_web.pdf
    [34]I. Moreno, “Spatial Distribution of LED Radiation”, Proceedings of SPIE: International Optical Design Conference, Vancouver, BC, Canada, Volume 6342, No. 634216, pp. 1-7, 2006.
    [35] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, S. L. Rudaz, “Illumination With Solid State Lighting Technology”, IEEE Journal on Selected Topics in Quantum Electronics, Volume 8, No. 2, pp. 310-320, March 2002.
    [36]J. Y. Tsao, “Solid-State Lighting: Lamps, Chips and Materials for Tomorrow”, IEEE Circuits and Devices Magazine , Volume 20, No. 3, pp. 28-37, 2004.
    [37]A. Bogaerts, E. Neyts, R. Gijbels and J. van der Mullen, “Gas Discharge Plasmas and their Applications”, Spectrochimica Acta-Part B Atomic Spectroscopy, Volume 57, pp.609-658, 2002.
    [38] Y. X. Qin, D.Y. Lin and S.Y.R Hui, “A Simple Method for Comparative Study on the Thermal Performance of Light Emitting Diodes (LED) and Fluorescent Lamps”, Applied Power Electronics Conference and Exposition, pp.152-158, 2009.
    [39]E. F. Schubert, “Light-Emitting Diodes 2nd Edition”, Cambridge University Press, Cambridge, pp. 59-85, 2006.
    [40]Y. Taniyasu, M. Kasu and T. Makimoto, “An Aluminium Nitride Light-Emitting Diode with A Wavelength of 210 Nanometres”, Nature, Volume 441, pp. 325-328, 2006.
    [41]http://leddna.com/
    [42]R. R. Tummala, “Fundamentals of Microsystems Packaging”, McGraw Hill international edition, 2001.
    [43]http://www.everlight.com/
    [44]http://www.busytrade.com/selling-leads/624103/Sell-SMD-LED-distributor-Power-LED.html
    [45]Green Energy Products, “SMD vs. DIP LED Technology LED Fluorescent Tubes”, Green-Energy-Products.com, LLC, 2009.
    http://www.green-energy-products.com/uploads/LED%20fluorescent%20tubes-dip%20smd.pdf
    [46]Solid-State Lighting Research and Development, Multi-Year Program Plan FY 2009–2015, Navigant Consulting, Inc., Radcliffe Advisors, Inc., and SSLS, Inc., March 2009.
    [47]N. Holonyak Jr. and S. F. Bevaqua, “Coherent (visible) Light Emission from Ga(As1-xPx) Junctions”, Apply Physics Letters, Volume 1, No. 4, pp. 82-83, 1962.
    [48]M. Bürmen, F. Pernus, and B. Likar, “LED Light Sources: A Survey of Quality-Affecting Factors and Methods for Their Assessment”, Measurement Science and Technology, Volume 19, No. 122002, pp. 1-15, 2008.
    [49]F. M. Steranka, J. Bhat, D. Collins etc., “High Power LEDs-Technology Status and Market Applications”, Physica Status Solidi (a), Volume 194, No. 2, pp. 380-388, 2002.
    [50]S. Nakamura, M. Senoh, T. Mukai, “P-GaN/N-InGaN/N-GaN Double- Heterostructure Bluelight-Emitting Diodes”, Japanese Journal of Applied Physics, Volume 32, pp. L8-L11, 1993.
    [51]http://www.cree.com/products/xlamp.asp
    [52]http://www.f557.com/jiancai3666.html
    [53]http://www.aboutdesigninterior.com/modern-mini-lamps-design-by-david-pidcock/
    [54]http://www.poozhao.com/31/LED/BBP520/BBP520.htm
    [55]Shanghai aisan electronics Co.,Ltd
    http://www.led-light-aisan.com/LED-tube-light.html
    [56]Shanghai aisan electronics Co.,Ltd
    http://www.led-light-aisan.com/led-street-light.html
    [57]S. M. Sze, “Semiconductor Devices Physics and Technology 2nd Edition”, John Wiley & Sons, inc., New York, pp.47-81, 2001.
    [58]K. T. Delaney, P. Rinke and CG Van de Walle, “Auger Recombination Rates in Nitrides from First Principles”, Applied Physics Letters, Volume 94, pp. 191109-1-191109-3, 2009.
    [59]E. F. Schubert, “Light-Emitting Diodes 2nd Edition”, Cambridge University Press, Cambridge, pp. 27-47, 2006.
    [60]T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells”, Applied Physics Letters, Volume 96, Issue 3, pp. 031906-1-031906-3, 2010.
    [61]D. A. Neamen, “Semiconductor Physics and Devices 3rd Edition”, McGraw- Hill, Inc., New York, pp. 709-767, 2003.
    [62]J. Potfajova, B. Schmidt, M. Helm, T. Gemming, M. Benyoucef, A. Rastelli and O. G. Schmidt, “Microcavity Enhanced Silicon Light Emitting pn-Diode”, Applied Physics Letters, Volume 96, Issue 15, pp. 151113-1-15113-3, 2010.
    [63]H. Kim, K. K. Kim, K. K. Choi, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and T. Y. Seong, “Design of High-Efficiency GaN-Based Light Emitting Diodes with Vertical Injection Geometry,” Applied Physics Letters, Volume 91, Issue 2, pp. 023510-1-023510-3, 2007.
    [64]S. Hwang and J. Shim, “A Method for Current Spreading Analysis and Electrode Pattern Design in Light-Emitting Diodes”, IEEE Transactions on Electron Devices, Volume 55, No. 5, pp. 1123-1128, 2008.
    [65]Paul Pickard, Cree LED Lighting, “An Integrated Approach to SSL Manufacturing”, SSL Workshop, San Jose CA, April 21, 2010,
    http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_manuf-roadmap_july2010.pdf
    [66]CREE http://www.cree.com/products/xlamp.asp
    [67]OSRAM http://www.osram.com/osram_com/LED/index.html
    [68]A. Poppe, G. Molnár and T. Temesvölgyi, “Temperature Dependent Thermal Resistance in Power LED Assemblies and a Way to Cope with It”, the 26th IEEE Semiconductor Thermal Measurement and Management Symposium, Santa Clara, CA, pp. 283-288, 2010.
    [69]E. M. Sa, F. L. M. Antunes and A. J. Perin, “Junction Temperature Estimation for High Power Light-Emitting Diode”, IEEE Transactions on Instrumentation and Measurement, Vigo, pp. 3030-3035, 2007.
    [70]V. Lampret, J. Peteranlj and A. Krainer, “Luminous Flux and Luminous Efficacy of Black-Body Radiation: An Analytical Approximation”, Solar Energy, Volume 73, No. 5, pp. 319-326, 2002.
    [71]M. Q. Liu, X. L. Zhou, W. Y. Li, Y. Y. Chen and W. L. Zhang, “Study on Methodology of LED’s Luminous Flux Measurement with Integrating Sphere”, Journal of Physics D: Applied Physics, Volume 41, pp. 144012-1-144012-5, 2008.
    [72]A. Ducharme, A. Daniels, E. Grann and G. Boreman, “Design of An Integrating Sphere as A Uniform Illumination Source”, IEEE Transactions on Education, Volume 40, Issue 2, pp. 131-134, 1997.
    [73]J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn and J. Martin, “Accelerated UV Weathering Device Based on Integrating Sphere Technology”, Review of Scientific Instruments, Volume 75, No. 11, pp. 4951-4959, 2004.
    [74]C. G. Venkatesh, R. S. Eng, and A. W. Mantz, “Tunable Diode Laser Integrating Sphere A Study of Their Output Intensity Characteristics”, Applied Optics, Volume 19, Issue 10, pp. 1704-1710, 1980.
    [75]CIE, “Measurement of LEDs”, CIE Publication, No. 127, 2007,
    http://www.techstreet.com/standards/CIE/127_2007?product_id=1371545
    [76]C.C. Miller and Y. Ohno, “Luminous Flux Calibration of LEDs at NIST”, Proceeding CIE 2nd Expert Symposium on LED Measurements, Gaithersburg, Maryland, USA, pp. 28-32, 2001.
    [77]Y. Ohno and B. Kránicz, “Spectroradiometer Characterization for Color- imetry of LEDs”, Proceeding CIE 2nd Expert Symposium on LED Measurements, Gaithersburg, Maryland, USA, pp. 56-60, 2001.
    [78]M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light- Emitting Diodes for Solid-State Lighting,” Journal of Display Technology, Volume 3, No. 2, pp. 160-175, 2007.
    [79]W. Nelson, “Analysis of Accelerated Life Test Data-Part I: The Arrhenius Model and Graphical Methods”, IEEE Transactions on Electrical Insulation, Volume EI-6, No. 4, pp. 165-181, 1971.
    [80]M. Stitch, G. M. Johnson, B. P. Kirk, J. B. Brauer, “Microcircuit Accelerated Testing Using High Temperature Operating Tests”, IEEE Transactions on Reliability, Volume R-24, pp. 238-250, 1975.
    [81]C. Yin, Y. Lee, C. Bailey, S. Riches, C. Cartwright, R. Sharpe and H. Orr, “Thermal Analysis of LEDs for Liquid Crystal Display's Backlighting”, the 8th International Conference on Electronic Packaging Technology, pp. 1-5, 2007.
    [82]M. Y. Tsai, C. H. Chen and C. S. Kang, “Thermal Analyses and Measurements of Low-Cost COP Package for High-Power LED”, the 58th Electronic Components and Technology Conference, pp. 1812-1818, 2008.
    [83]L. Yang, J. Hu, L. Kim and M. W. Shin, “Thermal Analysis of GaN- Based Light Emitting Diodes With Different Chip Sizes”, IEEE Transactions on Device and Materials Reliability, Volume 8, Issue 3, pp. 571-575, 2008.
    [84]J. Hu, L. Yang and M. W. Shin, “Thermal and Mechanical Analysis of High-Power LEDs with Ceramic Packages”, IEEE Transactions on Device and Materials Reliability, Volume 8, Issue 2, pp. 297-303, 2008.
    [85]B. Fan, H. Wu, Y. Zhao, Y. Xian, B. Zhang and G. Wang, “Thermal Study of High-Power Nitride-Based Flip-Chip Light-Emitting Diodes”, IEEE Transactions on Electron Devices, Volume 55, Issue 12, pp. 3375-3382, 2008.
    [86]S. Jang and M. W. Shin, “Thermal Analysis of LED Arrays for Automotive Headlamp With a Novel Cooling System”, IEEE Transactions on Device and Materials Reliability, Volume 8, Issue 3, pp. 561-564, 2008.
    [87]L. Zhou, H. Chen, B. An, F. Wu and Y. Wu, “Finite Element Thermal Analysis for High Power Multi-chip Light Emitting Diode”, International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China, pp. 164-168, 2009.
    [88]D. Li, G. Q. Zhang, K. Pan, X. Ma, L. Liu and J. Cao, “Numerical Simulation on Heat Pipe for High Power LED Multi-Chip Module Packaging”, International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China, pp. 393-397, 2009.
    [89]Y. F. Su, S. Y. Yang, W. H. Chi and K. N. Chiang, “Light Degradation Prediction of High-Power Light-Emitting Diode Lighting Modules”, 11th International Conference on Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, Bordeaux, pp. 393-397, 2010.
    [90]Material web, http://www.matweb.com/
    [91]G. N. Ellison, “Thermal Computation for Electronic Equipment”, R.E. Krieger Publishing Company, Malabar, Florida, 1989.
    [92]S. Huang, H. Wu, B. Fan, B. Zhang, and G. Wang, “A Chip-Level Electrothermal-Coupled Design Model for High-Power Light-Emitting Diodes”, Journal of Applied Physics, Volume 107, pp. 054509-1-054509-8, 2010.
    [93]C. Y. Lee, A. Su, Y. C. Liu, W. Y. Fan, and W. J. Hsieh, “In Situ Measurement of the Junction Temperature of Light Emitting Diodes Using a Flexible Micro Temperature Sensor”, Sensors ,Volume 9, pp. 5068-5075, 2009.
    [94]S. Todoroki, M. Sawai, and K. Aikj, “Temperature Distribution Along the Striped Active Region in High-Power GaAlAs Visible Lasers”, Journal of Applied Physics, Volume 58, No. 3, pp. 1124-1128, 1985.
    [95]P. W. Epperlein, G. L. Bona and P. Roentgen, “Local Mirror Temperatures of Red-Emitting (Al)GaInP Quantum-Well Laser Diodes by Raman Scattering and Reflectance Modulation Measurements”, Apply Physics Letters, Volume 60, Issue 6, pp. 680-682, 1992.
    [96]H. I. Abdelkader, H. H. Hausien and J. D. Martin, “Temperature Rise and Thermal Rise‐Time Measurements of A Semiconductor Laser Diode”, Review of Scientific Instruments, Volume 63, Issue 3, pp. 2004-2007, 1992.
    [97]D. C. Hall, L. Goldberg, and D. Mehuys, “Technique for Lateral Temperature Profiling in Optoelectronic Devices Using A Photo- luminescence Microprobe”, Apply Physics Letters, Volume 61, Issue 4, pp. 384-386, 1992.
    [98]P. W. Epperlein and G. L. Bona, “Influence of the Vertical Structure on the Mirror Facet Temperatures of Visible GaInP Quantum Well Lasers”, Apply Physics Letters, Volume 62, Issue 24, pp. 3074-3076, 1993.
    [99]Y. Gu and N. Naredran, “A Noncontact Method for Determining Junction Temperature of Phosphor-Converted White LEDs”, Proceedings of SPIE: Third International Conference on Solid-State Lighting, Volume 5187, San Diego, CA, USA, pp. 107-114, 2003.
    [100]N. Narendran, Y. Gu and R. Hosseinzadeh, “Estimating Junction Temperature of High-Flux White LEDs”, Proceedings of SPIE: Light- Emitting Diodes: Research, Manufacturing, and Applications VIII, San Jose, CA, USA, Volume 5366, pp. 158-160, 2004.
    [101]B. Siegal, “Practical Considerations in High Power LED Junction Temperature Measurements”, 31st International Conference on Electronics Manufacturing and Technology, Petaling Jaya, pp. 62-66, 2007.
    [102]E. Hong and N. Narendran, “A Method for Projecting Useful Life of LED Lighting Systems”, Proceedings of SPIE: Third International Conference on Solid-State Lighting, San Diego, CA, USA, Volume 5187, pp. 93-99, 2003.
    [103]S. Chhajed, Y. Xi, Y.-L. Li, Th. Gessmann and E. F. Schubert, “Influence of Junction Temperature on Chromaticity and Color-Rendering Properties of Trichromatic White-Light Sources Based on Light-Emitting Diodes”, Journal of Applied Physics, Volume 97, No. 5, pp. 054506-1-054506-8, 2005.
    [104]S. Murata and H. Nakada, “Adding a Heat Bypass Improves the Thermal Characteristics of A 50 μm Spaced 8-Beam Laser Diode Array”, Journal of Applied Physics, Volume 72, No. 6, pp. 2514-2516, 1992.
    [105]P. C. Tsai, R. W. Chuang and Y. K. Su, “Lifetime Tests and Junction- Temperature Measurement of InGaN Light-Emitting Diodes Using Patterned Sapphire Substrates”, Journal of Light wave Technology, Volume 25, No. 2, pp. 591-596, 2007.
    [106]S. L. Kuo, C. K. Liu, M. J. Dai, C. K. Yu, H. C. Chien and C. Y. Hsu, “Characteristics of Thermal Resistance for High Power LEDs”, 10th Electronics Packaging Technology Conference, Singapore, pp. 149-154, 2008.
    [107]W. Shockley and W. T. Read Jr. , “Statistics of the Recombinations of Holes and Electrons”, Physical Review, Volume 87, No. 5, pp. 835-842, 1952.
    [108]D. A. Neamen, “Semiconductor Physics and Devices 3rd Edition”, McGraw- Hill, Inc., New York, pp. 310-361, 2003.
    [109]E. F. Schubert, “Light-Emitting Diodes 2nd Edition”, Cambridge University Press, Cambridge, pp. 101-111, 2006.
    [110]Y. P. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors”, Physica, Volume 34, No. 149, pp. 149-152, 1967.
    [111]A. Keppens, W. R. Ryckaert, G. Deconinck and P. Hanselaer, “High Power Light-Emitting Diode Junction Temperature Determination from Current-Voltage Characteristics,” Journal of Applied Physics, Volume 104, No. 9, pp. 093104-093104-8, 2008.
    [112]EPISTAR Corporation,
    http://prod.epistar.com.tw/product_selection_c.aspx
    [113]Anteya Technology Corporation, http://www.anteya.com/

    下載圖示 校內:2013-02-16公開
    校外:2013-02-16公開
    QR CODE