簡易檢索 / 詳目顯示

研究生: 林毓宭
Li, Yu-Chiung
論文名稱: 雙 -(4,4',6,6'-四甲基-2,2'-聯吡啶)銅(I)/(II)雙(三氟甲磺酰基)酰亞胺搭配單一片式染料敏化太陽能電池之研究
Studies of Bis-(4,4',6,6'-tetramethyl-2,2'-bipyridine)copper(I)/(II) bis(trifluoromethanesulfonyl)imide for Monolithic Dye Sensitized Solar Cell
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 銅電解質單一片式染料敏化太陽能電池大面積低成本高效能
外文關鍵詞: Nanosphere lithography, Monolithic dye-sensitized solar cell, electrolyte Cu(II)(tmby)2TFSI2/1
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,傳統三明治結構染料敏化太陽能電池搭配鈷電解質在AM 1.5G的照光下元件最高轉換效率可達到14.3%,然而,由於一般導電玻璃成本較高且無法大面積量產。因此,越來越多團隊逐漸將目光投入於單一片式染料敏化太陽能電池,從一般傳統碳材料到導電高分子Poly-3,4-Ethylenedioxythiophene(PEDOT)替代導電玻璃作為電極,此外目前在AM 1.5G的照光下最高轉換效率為7.73%。本研究將透過聚苯乙烯球方式製備多孔電極金,發展高效能與低成本單一片式液態染料敏化太陽能電池。
    銅電解質Bis-(4,4',6,6'-tetramethyl-2,2'-bipyridine)copper(I)/(II) bis(trifluoromethanesulfonyl)imide ([Cu(tmby)2]2+/1+)系統中氧化還原電位較碘電解質低,搭配染料3-{6-{4-[bis(2',4'-dihexyloxybiphenyl-4-yl)amino-]phenyl}-4,4-dihexyl-cyclopenta-[2,1-b:3,4-b']dithiphene-2-yl}-2-cyanoacrylic acid(Y123)可有效將其驅動能量降至100mV即可將染料100%再生。因此,實驗首次使用銅電解質搭配染料Y123應用於大面積下的單一片式染料敏化太陽能電池,其元件結構FTO/TiO2/30nm–TiO2/400nm-TiO2/Y123 dye/Cu EL/SiO2/PEDOT:PSS/Au,另外透過調整染料濃度Y123、銅電解質濃度、Tetrahydrofuran(TBP)濃度以及催化層poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS)厚度優化元件。最終,實驗進一步將單一片式與傳統三明治式染料敏化太陽能電池相同面積下進行比較,兩種結構分別在AM 1.5G照光下有效面積為1cm2的元件轉換效率為6.7%與5.6%。

    In this study, we use Nanosphere lithography (NSL) method to fabricate a porous PEDOT:PSS/Au thin film as a counter electrode in monolithic dye-sensitized solar cell (M-DSCs). In addition, we will optimize the device by tuning the thickness of PEDOT:PSS and the concentration of the dye Y123, the electrolyte Cu(II)(tmby)2TFSI2/1 and the additive TBP to find out the best device performance. At last the device achieved a PCE of 6.7% with Voc of 1.01V, Jsc of 10.05mA/cm2 and FF of 65.5 in the active area 1cm2 under the 1-sun condition.

    摘要 3 致謝 11 目錄 12 表目錄 14 圖目錄 15 第一章 緒論 18 1.1 太陽能電池歷史起源 18 1.2 各世代的太陽能電池概要說明 18 1.2.1 矽晶太陽能電池 18 1.2.2薄膜太陽能電池 19 1.2.3有機太陽能電池 19 1.3 太陽能電池實驗量測原理 23 1.3.1 太陽能光譜 23 1.3.2 太陽能電池理論計算 24 1.3.3 太陽能電池的量子轉換效率 26 1.4 研究動機與目的 27 1.4.1低成本的單一片式染料敏化太陽能電池 27 1.4.2電解質的選擇 28 1.4.3 研究目的與目標 29 第二章 文獻回顧 30 2.1 銅電解質發展 30 2.2 單一片式染料敏化太陽能電池發展 40 第三章 實驗方法與儀器分析 48 3.1 實驗儀器與藥品 48 3.2 實驗藥品配置 50 3.3 實驗元件結構 52 3.4 元件製成流程 53 3.5 實驗量測與分析儀器的工作原理 56 第四章 結果與討論 66 4.1 不同催化材料在三明治結構中表現 66 4.2 PEDOT:PSS的材料分析 68 4.3 三明治結構下的優化過程 71 4.4 不同製程方式的多孔電極金的分析 78 4.5 散射層對於單一片式染料敏化太陽能電池影響 81 4.6 染料Y123濃度對於單一片式染料敏化太陽能電池影響 83 4.7 PEDOT:PSS厚度對於單一片式染料敏化太陽能電池影響 84 4.8 銅電解質濃度對於單一片式染料敏化太陽能電池影響 87 4.9 TBP濃度對於單一片式染料敏化太陽能電池影響 88 4.10 比較單一片式與三明治結構在相同有效面積元件表現 91 第五章 結論與未來展望 94 5.1 結論 94 5.2 未來展望 95 第六章 參考文獻 97

    [1] M. E. Becquerel, "Memoire sur les Effets Electriques Produits sous l'Influence des Rayons Solaires," Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences,vol. 9, pp. 561-567, 1839 1839. [Online]. Available: https://ci.nii.ac.jp/naid/10011332091/en/.
    [2] M. A. Green, "Photovoltaics: coming of age," in IEEE Conference on Photovoltaic Specialists, 21-25 May 1990 1990, pp. 1-8 vol.1, doi: 10.1109/PVSC.1990.111582.
    [3] D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, no. 11, pp. 671-673, 1976.
    [4] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, "22.8% efficient silicon solar cell," Applied Physics Letters, vol. 55, no. 13, pp. 1363-1365, 1989.
    [5] K. Masuko et al., "Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell," IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433-1435, 2014.
    [6] T. Matsui et al., "Development of highly stable and efficient amorphous silicon based solar cells," in Proc. 28th European Photovoltaic Solar Energy Conference, vol. 2213, 2013.
    [7] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (Version 45)," Progress in Photovoltaics: Research and Applications, vol. 23, no. 1, pp. 1-9, 2015.
    [8] J. Moser, "Notiz über Verstärkung photoelektrischer Ströme durch optische Sensibilisirung," Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, vol. 8, no. 1, pp. 373-373, 1887.
    [9] B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, no. 6346, pp. 737-740, 1991/10/01 1991.
    [10] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical Communications, vol. 51, no. 88, pp. 15894-15897, 2015.
    [11] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [12] H.-S. Kim, A. Hagfeldt, and N.-G. Park, "Morphological and compositional progress in halide perovskite solar cells," Chemical Communications, vol. 55, no. 9, pp. 1192-1200, 2019.
    [13] NREL, "Best Research-Cell Efficiency Chart," https://www.nrel.gov/pv/cell-efficiency.html.
    [14] Enlitech, "Air mass," https://zh-tw.enlitechnology.com/show/air-mass-am1-5g-am1-5d-306249.htm.
    [15] A. Ndiaye, C. M. F. Kébé, P. A. Ndiaye, A. Charki, A. Kobi, and V. Sambou, "Impact of dust on the photovoltaic (PV) modules characteristics after an exposition year in Sahelian environment: The case of Senegal," International Journal of Physical Sciences, vol. 8, no. 21, pp. 1166-1173, 2013.
    [16] B. Mazhari, "An improved solar cell circuit model for organic solar cells," Solar energy materials and solar cells, vol. 90, no. 7-8, pp. 1021-1033, 2006.
    [17] G. Hashmi et al., "Review of materials and manufacturing options for large area flexible dye solar cells," Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 3717-3732, 2011.
    [18] G. Boschloo and A. Hagfeldt, "Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells," Accounts of chemical research, vol. 42, no. 11, pp. 1819-1826, 2009.
    [19] M. Wang, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel, "Recent developments in redox electrolytes for dye-sensitized solar cells," Energy & Environmental Science, vol. 5, no. 11, pp. 9394-9405, 2012.
    [20] E. Mosconi et al., "Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study," Journal of the American Chemical Society, vol. 134, no. 47, pp. 19438-19453, 2012.
    [21] S. Hattori, Y. Wada, S. Yanagida, and S. Fukuzumi, "Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells," Journal of the American Chemical Society, vol. 127, no. 26, pp. 9648-9654, 2005.
    [22] Y. Bai, Q. Yu, N. Cai, Y. Wang, M. Zhang, and P. Wang, "High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle," Chemical Communications, vol. 47, no. 15, pp. 4376-4378, 2011.
    [23] M. Freitag et al., "High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor," Energy & Environmental Science, vol. 8, no. 9, pp. 2634-2637, 2015.
    [24] Y. Saygili et al., "Copper bipyridyl redox mediators for dye-sensitized solar cells with high photovoltage," Journal of the American Chemical Society, vol. 138, no. 45, pp. 15087-15096, 2016.
    [25] L. Kavan, Y. Saygili, M. Freitag, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, "Electrochemical properties of Cu (II/I)-based redox mediators for dye-sensitized solar cells," Electrochimica Acta, vol. 227, pp. 194-202, 2017.
    [26] L. Kavan et al., "Novel highly active Pt/graphene catalyst for cathodes of Cu (II/I)-mediated dye-sensitized solar cells," Electrochimica Acta, vol. 251, pp. 167-175, 2017.
    [27] M. Freitag et al., "Dye-sensitized solar cells for efficient power generation under ambient lighting," Nature Photonics, vol. 11, no. 6, p. 372, 2017.
    [28] P. Ferdowsi et al., "Alternative bases to 4-tert-butylpyridine for dye-sensitized solar cells employing copper redox mediator," Electrochimica Acta, vol. 265, pp. 194-201, 2018.
    [29] W. Zhang et al., "Comprehensive control of voltage loss enables 11.7% efficient solid-state dye-sensitized solar cells," Energy & Environmental Science, vol. 11, no. 7, pp. 1779-1787, 2018.
    [30] Y. Cao, Y. Liu, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, "Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics," Joule, vol. 2, no. 6, pp. 1108-1117, 2018.
    [31] A. Kay and M. Grätzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder," Solar Energy Materials and Solar Cells, vol. 44, no. 1, pp. 99-117, 1996.
    [32] U. Bach et al., "Solid-state dye-sensitized mesoporous TiO 2 solar cells with high photon-to-electron conversion efficiencies," Nature, vol. 395, no. 6702, p. 583, 1998.
    [33] J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, "High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination," Applied Physics Letters, vol. 79, no. 13, pp. 2085-2087, 2001.
    [34] J. Krüger, R. Plass, M. Grätzel, and H.-J. Matthieu, "Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis (4, 4′-dicarboxy-2, 2′ bipyridine)-bis (isothiocyanato) ruthenium (II)," Applied Physics Letters, vol. 81, no. 2, pp. 367-369, 2002.
    [35] L. Schmidt‐Mende et al., "Organic dye for highly efficient solid‐state dye‐sensitized solar cells," Advanced Materials, vol. 17, no. 7, pp. 813-815, 2005.
    [36] H. Han, U. Bach, Y.-B. Cheng, R. A. Caruso, and C. MacRae, "A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode," Applied Physics Letters, vol. 94, no. 10, p. 103102, 2009.
    [37] G. Liu et al., "A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell," Electrochimica Acta, vol. 69, pp. 334-339, 2012.
    [38] S. J. Thompson, J. M. Pringle, X. L. Zhang, and Y.-B. Cheng, "A novel carbon–PEDOT composite counter electrode for monolithic dye-sensitized solar cells," Journal of Physics D: Applied Physics, vol. 46, no. 2, p. 024007, 2012.
    [39] J. Kwon, N.-G. Park, J. Y. Lee, M. J. Ko, and J. H. Park, "Highly efficient monolithic dye-sensitized solar cells," ACS applied materials & interfaces, vol. 5, no. 6, pp. 2070-2074, 2013.
    [40] P.-S. Shen et al., "A novel porous Ti/TiN/Ti thin film as a working electrode for back-contact, monolithic and non-TCO dye-sensitized solar cells," Sustainable Energy & Fuels, vol. 1, no. 4, pp. 851-858, 2017.
    [41] M. C. Sharma, B. Tripathi, S. Kumar, S. Srivastava, and Y. K. Vijay, "Low cost CuInSe2 thin films production by stacked elemental layers process for large area fabrication of solar cell application," Materials Chemistry and Physics, vol. 131, no. 3, pp. 600-604, 2012.
    [42] G. Xue et al., "Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum," Journal of Physics D: Applied Physics, vol. 45, no. 42, p. 425104, 2012.
    [43] S. Sarker, A. J. Ahammad, H. W. Seo, and D. M. Kim, "Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation," International Journal of Photoenergy, vol. 2014, 2014.
    [44] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, "Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy," Solar Energy Materials and Solar Cells, vol. 87, no. 1-4, pp. 117-131, 2005.
    [45] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, "On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment," Polymer, vol. 45, no. 25, pp. 8443-8450, 2004.
    [46] J. Kim, J. Jung, D. Lee, and J. Joo, "Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents," Synthetic Metals, vol. 126, no. 2-3, pp. 311-316, 2002.
    [47] X. Crispin et al., "Conductivity, morphology, interfacial chemistry, and stability of poly (3, 4‐ethylene dioxythiophene)–poly (styrene sulfonate): A photoelectron spectroscopy study," Journal of polymer science Part B: Polymer physics, vol. 41, no. 21, pp. 2561-2583, 2003.
    [48] G. Schlichthörl, S. Huang, J. Sprague, and A. Frank, "Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy," The Journal of Physical Chemistry B, vol. 101, no. 41, pp. 8141-8155, 1997.
    [49] G. Boschloo, L. Häggman, and A. Hagfeldt, "Quantification of the effect of 4-tert-butylpyridine addition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells," The Journal of Physical Chemistry B, vol. 110, no. 26, pp. 13144-13150, 2006.
    [50] M. K. Nazeeruddin et al., "Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382-6390, 1993.
    [51] S. Ito et al., "Photovoltaic characterization of dye‐sensitized solar cells: effect of device masking on conversion efficiency," Progress in photovoltaics: research and applications, vol. 14, no. 7, pp. 589-601, 2006.

    無法下載圖示 校內:2024-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE