| 研究生: |
張家豪 Chang, Jia-Hao |
|---|---|
| 論文名稱: |
Ti-6Al-4V合金於含二氧化碳之硫酸鈉水溶液中之氫誘發破裂行為 Effect of Carbon Dioxide on the Hydrogen Assisted Cracking Behavior of Ti-6Al-4V Alloy in Sodium Sulfate Solution |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | Ti-6Al-4V 、氫誘發破裂 、慢應變速率拉伸試驗 、二氧化碳 |
| 外文關鍵詞: | Ti-6Al-4V, Hydrogen Assisted Cracking, Slow Strain Rate Test, Carbon Dioxide |
| 相關次數: | 點閱:109 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討二氧化碳對Ti-6Al-4V合金於0.1 M硫酸鈉水溶液中之氫誘發破裂行為的影響。藉由在控制電位(-1.4、-1.6和-1.9 VSCE)的條件下進行慢應變速率拉伸試驗(slow strain rate testing, SSRT),以評估Ti-6Al-4V雙相鈦合金之氫誘發破裂(hydrogen assisted cracking, HAC)敏感性。
拉伸試驗結果顯示,Ti-6Al-4V合金在0.1 M硫酸鈉水溶液中,其機械性質不會因為電位的改變而有明顯的變化,幾乎與在空氣中所測得結果相近。於0.1 M硫酸鈉水溶液中通入二氧化碳氣體後,在-1.4及-1.6 VSCE的控制電位下,其機械性質亦無顯著的差異。當電位控制在-1.9 VSCE時,則發現Ti-6Al-4V合金其降伏強度(yielding strength, YS)從1120 MPa下降至860 MPa,而總延伸率(total elongation)從15.2 %減少至12.1 %,並且於試片斷裂面的中央及邊緣區域部分,可觀察到脆性破裂特徵與二次裂痕(secondary crack)的存在,顯示二氧化碳會促進Ti-6Al-4V合金之氫誘發破裂敏感性。
Ti-6Al-4V合金在800℃持溫5小時,再以水淬方式冷卻至室溫後,除了可改善Ti-6Al-4V合金之柱狀晶結構組織,同時亦提高β相的體積比例。由拉伸試驗結果得知,經熱處理後之Ti-6Al-4V合金其延伸率有明顯增加的現象,呈現較佳的抗形變能力。另外,於0.1 M硫酸鈉水溶液中通入二氧化碳氣體後,當電位控制在-1.9 VSCE時,經熱處理後之Ti-6Al-4V合金其降伏強度從900 MPa下降至760 MPa,而總延伸率從16 %降低至13.5 %,並且在拉伸試棒的標距(gage)邊緣處可明顯發現二次裂紋的形成。
X-ray分析結果顯示,原材及經熱處理後之Ti-6Al-4V合金於含二氧化碳之0.1 M硫酸鈉水溶液中,在-1.9 VSCE陰極電位下經慢應變速率拉伸試驗後,可在兩者試片中發現到δ型氫化鈦的繞射峰。說明在-1.9 VSCE陰極電位下,二氧化碳氣體的通入有助於氫化鈦在兩者試片表面上形成。
The effects of carbon dioxide on the hydrogen assisted cracking (HAC) behavior of Ti-6Al-4V alloy in 0.1 M sodium sulfate solution were investigated. At applied potentials (-1.4, -1.6, -1.9 VSCE), slow strain rate tests (SSRT) were employed to evaluate the HAC resistance of dual phase Ti-6Al-4V alloy.
The SSRT experimental results exhibited that the mechanical behavior of Ti-6Al-4V alloy in 0.1 M sodium sulfate solution was almost the same as that in air, and independent of electrochemical potential in the range applied. At applied potentials of -1.4 and -1.6 VSCE, a carbon dioxide purging did not affect the mechanical properties of Ti-6Al-4V alloy in 0.1 M sodium sulfate solution. However, at an applied potential of -1.9 VSCE, a carbon dioxide purging caused a decrease in yielding strength from 1120 MPa to 860 MPa, and a reduction in elongation from 15.2 % to 12.1 %. And the brittle characteristics and secondary crack were observed at the central and edge areas of the fractured surface. The results indicated that the dissolved carbon dioxide in 0.1 M sodium sulfate solution would promote the susceptibility of hydrogen assisted cracking in Ti-6Al-4V alloy.
Ti-6Al-4V alloy was solution treated at 800℃ for 5 h and then water quenched to room temperature. In addition to modifying the columnar microstructure of Ti-6Al-4V alloy, the volume ratio of β phase was also increased by applying the heat treatment that mentioned above. The SSRT experimental results exhibited that the elongation had enhanced after heat treatment. However, at an applied potential of -1.9 VSCE, a carbon dioxide purging caused a decrease in yielding strength from 900 MPa to 760 MPa, and a reduction in elongation from 16 % to 13.5 %. The fractograph were also observed a large number of secondary crack at the gage section of the fractured specimens.
The X-ray analyses indicated that as-received and heat-treatment Ti-6Al-4V alloy in the dissolved carbon dioxide of 0.1 M sodium sulfate solution at an applied potential of -1.9 VSCE, the δ titanium hydride diffraction peaks were found at the both fractured specimens after slow strain rate testing. The facts explained that a carbon dioxide purging resulted in a production of titanium hydride on the surface of the specimens.
1. H. Arslan, Galvanic Corrosion of Titanium Based Dental Implant Materials, Journal of Applied Electrochemistry, 38(2008)853.
2. P. Y. Lim, P. L. She, and H. C. Shih, Microstructure Effect on Microtopography of Chemically Etched Alpha-Beta Titanium Alloys, Applied Surface Science, 253(2006)449.
3. K. Bordji, J. Y. Jouzeau, D. Mainard, and E. Payan, Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe Alloys According to Three Surface Treatments, Using Human Fibroblasts and Osteoblasts, Biomaterials, 17(1996)929.
4. S. Nesˇic’, Key Issues Related to Modelling of Internal Corrosion of Oil and Gas Pipelines, Corrosion Science, 49(2007)4311.
5. M. B. Kermani, A. Morshed, Carbon Dioxide Corrosion in Oil and Gas Production, Corrosion, 59(2003)660.
6. R. Nyborg, Overview of CO2 Corrosion Models for Wells and Pipelines, Corrosion, 2233(2002)3.
7. J. T. Johnson, C. L. Durr, and J. A. Beavers, Effects of O2 and CO2 on Near-Neutral-pH Stress Corrosion Crack Propagation, Corrosion, 356 (2000).
8. R. N. Parkins, W. K. Blanchard Jr., and B.S. Delanty, Transgranular Stress Corrosion Cracking of High-Pressure Pipelines in Contact with Solutions of Near Neutral pH, Corrosion, 50(1994)394.
9. M. J. Donachie.(Jr.),Titanium and Titanium Alloy, Source Book, 10.
10. M. Peter, J. Hemptenmacher, J. Kumpfert and C. Leyens, Titanium and Titanium Alloys Fundamentals and Applications, WILEY-VCH GmbH & Co. KGaA, (2003)4.
11. M. J. Donachie, Titanium, A Technical Guide 2nd Edition ASM International, (1989).
12. W. Herman, R. V. Carter, W. H. Heil, R. J. Kotfila, and C. J. Scholl, Alpha-Beta Type Ti–4.5%Al–3%V–2%Fe–2%Mo Titanium Alloy, Metals Handbook, ASM, 3(1983)763.
13. 崔約賢,王長利,金屬斷口分析,哈爾濱工業大學,(1998)155.
14. V. Madina, I. Azkarate, Compatibility of Materials with Hydrogen. Particular Case: Hydrogen Embrittlement of Titanium Alloys, International Journal of Hydrogen Energy, 34 (2009)5976.
15. D. G. Westlake, Generalized Model for Hydrogen Embrittlement, Metals Handbook, ASM, 62(1969)1000.
16. H. Numakura, M. Koiwa, H. Asano, H. Murata and F. Izumi, X-ray Diffraction Study on the Formation of γ Titanium Hydride, Scripta Met. , 20(1986)213.
17. D. H. kohn and P. Ducheyne, Tensile and Fatigue Strength of Hydrogen-Treated Ti-6Al-4V Alloy, Journal of Materials Science, 26(1991)328.
18. B. B. Chechulin and M. V. Bodunova, Physical Metallurgy of Titanium, Science, (1964)196.
19. D. S. Shih and H. K. Birnbaum, Evidence of FCC Titanium Hydride Formation in β Titanium Alloy: An X-ray Diffraction Study, Scripta Met., 20(1986)1261.
20. J. C. Williams, A. W. Thompson and I. M. Bernstein, Effect of Hydrogen on Behavior of Materials, AIME, (1976)367.
21. A. R. Troiano, The Role of Stress in Hydrogen Induced Delayed Failure, AIME, 832(1960)41.
22. J. Brettle, Stress Corrosion of Titanium and its Alloys in Aqueous Chloride Environments, Scripta Met., (1972)442.
23. R. J. H. Wanhill, Aqueous Stress Corrosion in Titanium Alloys, Br. Corros. J, 10(1972)69.
24. M. J. Blackburn, J. A. Feeney, and T. R. Beck, State of the Art of Stress Corrosion Cracking of Titanium Alloys, Boeing Co., (1970).
25. E. T. Gutelmacher, D. Eliezer, Hydrogen Cracking in Titanium Based Alloys, Journal of Alloys and Compounds, 404(2005)622.
26. D. Eliezer, Positive Effects of Hydrogen in Metals, Materials Science and Engineering A, 280(2000)221.
27. H. G. Nelson, Environmental Hydrogen Embrittlement of an α-β Titanium Alloy: Effect of Hydrogen Pressure, Metallurgical Transactions , 4(1973)365.
28. H. G. Nelson, D. P. Williams, and J. E. Steine, Environmental Hydrogen Embrittlement of an α-β Titanium Alloy: Effect of Microstructure, Metallurgical and Materials Transactions A, 3(1972)470.
29. H. Berthe´ le´my, Compatibility of Metallic Materials with Hydrogen. Review of the Present Knowledge. In: 16th World Hydrogen Energy Conference (WHEC 2006), Lyon, France, 13–16 June, (2006).
30. ASTM B 265-04, Standard Specification for Titanium and Titanium Alloy Strip, Sheet and Plate, Philadelphia: American, Society for Testing and Materials, (2004).
31. C. L. Briant , Z. F. Wang , N. Chollocoop, Hydrogen Embrittlement of Commercial Purity Titanium, Corrosion Science, 44(2002)1880.
32. B. G. Yuan, H. P. Yu, C. F. Li, D. L. Sun, Effect of Hydrogen on Fracture Behavior of Ti–6Al–4V alloy by In-Situ Tensile Test, International Journal of Hydrogen Energy, 35(2010)1835.
33. R. W. Staehle, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, Houston, (1973)193.
34. A. K. Roy, M. K. Spragge, D. L. Fleming, and B.Y. Lum, Cracking of Titanium Alloys under Cathodic Applied Potential, Micron, 32(2001)211.
35. H. F. Jong, Evaluation of the Constant Strain Rate Test Method for Testing Stress Corrosion Cracking in Aluminum Alloys, Corrosion, 34(1978)32.
36. R. N. Parkins, R. D. Kane, Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications, ASTM, (1993)7.
37. G. R. Hoey, R. W. Revie, and R. R. Ramsingh, Comparison of the Slow Strain Rate Technique and the NACE TM0177 Tensile Test for Determining Sulfide Stress Cracking Resistance, Materials Performance, 26(1987)42.
38. S. L. Semiatin, T. M. Brown, T. A. Doff, and P. N. Fagin, Diffusion Coefficients for Modeling the Heat Treatment of Ti-6Al-4V, Metallurgical and Materials Transaction A, 35(2003)3015
39. S. L. Semiatin, S. L. Knisley, P. N. Fagin, and F. Zhang, Microstructure Evolution during Alpha-Beta Heat Treatment of Ti-6Al-4V, Metallurgical and Materials Transaction A, 34(2003)2377.
40. M. T. Pham, I. Zyganow, W. Matz, H. Reuther, S. Oswald, E. Richter, and E. Wieser, Corrosion Behavior and Microstructure of Titanium Implanted with Stabilizing Elements, Thin Solid Films, 310(1997)251.