| 研究生: |
王盈皓 Wang, Ying-Hao |
|---|---|
| 論文名稱: |
過渡金屬鎳摻雜對鐵酸鉍性質的影響 The Effects of Nickel Substitution on Bismuth Ferrite |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 鐵酸鉍 、鐵電光伏效應 |
| 外文關鍵詞: | bismuth ferrite, photovoltaic effect |
| 相關次數: | 點閱:80 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用溶膠凝膠法(sol-gel)來製備摻雜鎳的鐵酸鉍。以溶膠凝膠法製得的粉末再經過燒結,製備塊材的樣品。由實驗可發現摻雜鎳的鐵酸鉍可由控制不同的燒結溫度來獲得鐵酸鉍的成相,避免Bi25FeO40和Bi2Fe4O9的雜相的生成。隨著鎳摻雜濃度的提高至5at%,雜相Bi25FeO40的生成將不可避免。而由磁滯曲線的量測,摻雜高於3at% Ni的樣品可以發現磁性相,推測可能為Ni2FeO4相。
藉由光致發光量測之發光光譜,摻雜鎳的鐵酸鉍可以觀察到452nm、468nm、512nm、680nm和689nm等發光波段。其中452nm為導帶至價帶之躍遷,468nm可能來自Bi2+缺陷能階至價帶之躍遷,而512nm可視為導帶至Ni3+能階,680nm和689nm應該與氧空缺有關。在導電率對溫度的量測方面,觀察到鐵酸鉍的電阻隨溫度上升而下降的現象,經過公式的換算可得摻雜鎳鐵酸鉍之活化能。其中活化能2.43eV符合光致光譜觀察到512nm發光波段之能量,說明可能有Ni3+能階的存在。
以本製程製作的樣品進行I-V特性分析,由擬合圖可以觀察到在低電位為歐姆導體的狀態,而高電位則是受空間電荷所主導。在照光下動態電位電流變化的實驗中,可以發現無摻雜和摻雜鎳鐵酸鉍皆具有鐵電體光伏效應的性質,但有摻雜鎳的鐵酸鉍樣品的電流較無摻雜的樣品強度高約一個數量級。
In this study, Ni-doped bismuth ferrite was prepared by the sol–gel method. Under the optimized sintering conditions, the samples with the Ni concentration less than 3 at% showed a pure phase. For the higher doping concentration, X-ray diffraction (XRD) revealed the presence of the secondary phase, Bi25FeO40, and the samples showed a large magnetic moment with a typical M-H hysteresis loop for the soft ferromagnets. Considering the earlier XRD observation of the Bi-enriched secondary phase, the formation of the spinel ferrite NiFe2O4 was highly likely, indicating that the Ni doping limit in BiFeO3 was below 3 at%.
Photoluminescence measurements were carried out for the samples and observed five emissions at the wavelengths about 452 nm, 468 nm, 512nm, 680nm and 689 nm, respectively. The 452 nm emission came from the inter-band transition and the 469 nm emission was probably due to the transition from the Bi2+ defect level to the valence band. The 512nm emission was identified with the transition from the conduction band to the Ni3+ level. The 680nm and 689nm emissions were related to the oxygen vacancies. Compared to the pure BiFeO3, the resistivity of the Ni-doped BiFeO3 samples were reduced by more than three orders of magnitude. In the temperature-dependent measurements, the resistivity decreased with the increasing temperature and the activation energies of the Ni-doped BiFeO3 were obtained by fitting the Arrhenius plots. The observed activation energy of 2.43 eV could be related to the 512nm emission. The origin of this defect/dopant level might be ascribed to the presence of Ni3+.
The current vs. voltage (I-V) characteristics were analyzed. The initial low voltage part of the I-V curves was ohmic, while in the high voltage region the power law relations (IVn, n>1) were observed, indicating that the dominant conduction mechanism was the space charge limited conduction with deep traps. Under the simulated-sunlight illumination, photovoltaic effect was observed for both the pure and Ni-doped BiFeO3. However, the magnitude of the effect was ten-fold larger for the Ni doped samples.
1.鄭佩慈, “鐵電材料之特性與應用”,儀器科學中心簡訊68期, (2005).
2.呂正傑,詹世雄, “鐵電記憶體簡介”,奈米通訊,第五卷第四期(1998).
3. R. J. H. Voorhoeve, Advanced Mate. Catal. ; Academic Press: New
York, (1977)
4. Y. Xu ,“Ferroelectric Materials and their Applications”, North
Holland , Amsterdam , 1991.
5.G. Shirane, F. Jona, and R. Pepinsky, “Some Aspects of Ferroelectricity”, Proc. IRE., 42, 1738 (1955).
6.張文智. “利用射頻磁控濺鍍系統製備BiFeO3複鐵式薄膜及相關性
研究. ”, 國立成功大學材料與工程學系 碩士論文 (2008).
7. 張志嘉.“摻雜鑭、矽之鐵酸鉍多鐵性薄膜製備與特性之研究. ”, 國立成功大學材料與工程學系 碩士論文 (2006)
8. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, “陶瓷材料概論”, 皢園出版社, 臺北市, (1988年).
9.M.E. Lines and A.M. Glass, “Principles and applications of ferroelectrics and related materials”, Oxford University, New York, (2001).
10. B. Ruette, Master's Thesis, “Induced Phase Transition in Magnetoelectric BiFeO3 Crystals, Thin-layers and Ceramics”, Virginia Polytechnic Institute and State University, (2003)
11. M. Barsoum, “Fundamentals of Ceramics”, McGraw Hill, New York, (1994).
12. 曲遠方主編 ,“新材料與技術應用叢書”,功能陶瓷材料 ,初版 03,2006
13. Y. Xu, “Ferroelectric Materials and Their Applications”, published by North-Holland Netherlands, (1991).
14. 汪建民,“陶瓷技術手冊”,中華民國粉末冶金協會,(1994).
15. 金重勳,“磁性技術手冊”,中華民國磁性技術協會,(2002).
16. C. Kittel, “Introduction to Solid State Physics 7th ed.”, Wiley, New York, (1996).
17. J.A.C. Bland and B. Heinrich, “Ultrathin Magnetic Structure”, Springer, New York, (1994).
18. M.E. Lines and A.M. Glass, “Principles and applications of ferroelectrics and related materials”, Oxford University, New York, (2001).
19. S.M. Sze, “Physics of Semiconductor Devices”, Wiley, New York, (1981).
20. I. Stolichnovb and A. Tagantsev, “Space-charge influenced-injection model for conduction in Pb(ZrxTi1-x)O3 thin films”, J. Appl. Physi., 84, 3216 (1998).
21. M.Ohring.“The Materials Science of Thin Films. ”, Academic Press Inc (1992).
22. D.Ivanova, et al. “Structural and dielectric properties of spin-on barium strontium titanate thin films. ”,J. Appl. phys. 77, 266-267.
23. 黃明義,黃哲勳,李虹儀,“激發光光譜分析(含PL與CL)”, 台灣大學化學系
24. D. A. Skoog and J. J. Leary,“Principles of Instrumental Analysis 4th Ed. ”(1992)
25.汪健民,“材料分析”(1998)
26.T. Choi, S. Lee,Y.J. Choi, V. Kiryukhin, S.-W. Cheong,“Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3.”,Science 324, 63 (2009)
27. M. Qin, K. Yao, and Y. C. Liang, “ High efficient photovoltaics in nanoscaled ferroelectric thin films” Appl. Phys. Lett, 93, 122904 (2008).
28. V. M. Fridkin, “Bulk photovoltaic effect in noncentrosymmetric crystals”, Crystallography Reports, Vol. 46, No. 4, 654 (2001).
29. Dillip K. Mishra, Xiaoding Qi,“Energy levels and photoluminescence properties of nickel-doped bismuth ferrite”, Journal of Alloys and Compounds 504 (2010) 27–31
30. S.P.Crane, C.Bihler , M.S.Brandt , S.T.B.Goennenwein , M.Gajek , R.Ramesh,“Tuning magnetic properties of magnetoelectric BiFeO3–NiFe2O4 nanostructures”, Journal of Magnetism and Magnetic Materials 321 (2009) L5–L9
31. Ameer Azam, Ali Jawad, Arham S. Ahmed, M. Chaman, A.H. Naqvi, “Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method”, Journal of Alloys and Compounds 509 (2011) 2909–2913
32. Xiaoding Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire, and Judith L. MacManus-Driscoll,“Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3”, Applied Physics Letters 86, (2005)