簡易檢索 / 詳目顯示

研究生: 王長福
Wang, Chang-Fu
論文名稱: 線鱧(Channa striata)之視網膜細胞拓譜與視覺空間解析度
The Retinal Cell Topography and the Spatial Resolution of the Striped Snakehead Fish (Channa striata)
指導教授: 邱慈暉
Chiou, Tsyr-Huei
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 61
中文關鍵詞: 線鱧視網膜拓譜空間解析度匯聚比
外文關鍵詞: striped snakehead fish, retinal topography, visual acuity, convergence ratio
相關次數: 點閱:104下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討線鱧(Channa striata)之視網膜細胞拓譜與其空間解析度。實驗使用五隻線鱧為樣本,經MS-222麻醉後以磷酸鹽緩衝生理食鹽水和中性福馬林固定液灌流犧牲,取得眼球樣本。視網膜經過全包埋(wholemount)後觀察視錐細胞(cone cell)並將結果輸入R語言撰寫之程式進行分析。研究結果顯示,線鱧之視網膜拓譜具有一明顯的視覺帶(visual streak)和顳區(area temporalis),可以推論線鱧之視覺對於水平線和正前方之立體視覺空間解析度較佳。線鱧之視錐細胞數量每平方公釐約有2602至37982個細胞,平均±標準差為每平方公釐12763±5002個細胞,與前人研究結果相比,線鱧錐細胞的密度低於目前已知的多種日行性魚類,此結果符合其晨昏活動之習性。視錐細胞以2+2+1之形式形成一方陣排列,由四個雙視錐細胞(double cone)包圍一個單視錐細胞(single cone)組成一個方陣單位,這類錐細胞排列方式較常出現在掠食動物之視網膜,此結果支持線鱧明顯的掠食習性。五個體神經節細胞之密度最高平均±標準差為每平方公釐10391±304個細胞,且顳區之密度分布較視錐細胞明顯。根據前人研究之公式,視錐細胞之密度最高可提供約每度5.92週期之空間解析度,而神經節細胞則可提供每度3.76週期之空間解析度。綜觀其他魚類,此組數據並不特別突出,推測應與其晨昏活動之習性和棲息環境有關。這兩組數據由組織學方式獲得,應視為最高理論值。線鱧之視錐細胞對神經節細胞之匯聚比(convergence ratio)在不同的特化區域有不同的比例,高密度區域之匯聚比較低密度者低。與水生魚類和陸生動物相比,線鱧之數據相對較低,對偵測移動之物體較為有利。

    The aim of this research is to investigate the retinal cell topography and the visual acuity of the striped snakehead fish (Channa striata). Five snakehead fish were collected, anaesthetized with MS-222 and euthanized with perfusion of PBS followed by 4% paraformaldehyde in PBS. The eyeballs were collected for retinal whoulmount to observe the cone cell mosaic and the density distribution of both cone cells and retinal ganglion cells. The data were input into R scripts for further analysis. The results indicated a visual streak and area temporalis specialization on the retina. The snakehead fish might achieve better acuity on the horizon and the front. The densities of the cone cells fell in a 2602 to 37982 cells/mm2 interval and the average was 12763±5002 cells/mm2.Compared to former researches, the cell densities were intermediate, supported its crepuscular behavior. The cone cells were arranged in a 2+2+1 array. A single cone is surrounded by four double cones which result in a square lattice. The result agreed its aggressive hunting behavior. The peak density of the retinal ganglion cell is 10391±304 cells/mm2. The areae temporalis formed by the ganglion cells are more obvious than the cone cells. The peak resolution measured by the cone cells is 5.92 c/deg, while the acuity based on the retinal ganglion cells is 3.76 c/deg. The data were similar to other freshwater teleosts, it was hypothesized that the environmental factors, such as the turbidity and the light conditions were crucial thus restricted the resolution. The visual acuities were derived from histological measurements, therefore the values should be considered as the upper limit. Combine the cone and retinal ganglion cell counts, the convergence ratios were significantly higher at the area of high visual acuity in comparison with that of low density area. The ratio of the striped snakehead fish was lower than some known freshwater species. In previous studies, the low convergence ratio was beneficial for motion detection which was an important visual function for the striped snakehead fish.

    中文摘要 I ENGLISH ABSTRACT II ACKNOWLEDGEMENT IV CONTENTV I LIST OF TABLES VIII LIST OF FIGURES IX Chapter 1: Introduction 1 1.1 Vision in Teleosts 1 1.2 Specialization of Photoreceptors 3 1.3 The Retinal Ganglion Cells 6 1.4 Retinal Specialization and Behaviors in Teleost 7 1.5 Visual Acuity (VA) and Its Evaluation 9 1.6 Retinal Wholemount Technique 12 1.7 The Striped Snakehead Fish (Channa striata) 13 1.8 Purpose 14 Chapter 2. Material and Methods 16 2.1 Sample Acquisition 16 2.2 Photoreceptor Counts 17 2.3 Cresyl Violet Staining and Ganglion Cell Counts 18 2.4 Evaluating the Visual Acuity from Retinal Topography 20 2.5 Reconstruction of Retinal Topography with R Software 22 2.6 Determine the Convergence Ratio 22 Chapter 3. Results 24 3.1 The Basic Diameters 24 3.2 Cone Cell Topography 24 3.3 Retinal Ganglion Cell Topography 25 3.4 The Visual Acuity of C. Striata 25 3.5 The Convergence Ratio of Cone Cells and Ganglion Cells 26 Chapter 4. Discussion 27 4.1 The Cell Distribution 27 4.2 Specialized Location of the Retinae 28 4.3 The Cell Topography through Aging 29 4.4 The Estimated Visual Acuity 30 4.5 Sensitivity or Acuity 31 Chapter 5. Conclusion 34 Chapter 6. Tables 36 Chapter 7. Figures 46 Chapter 8. Reference 53

    Ahlbert, I.-B. (1976). Organization of the Cone Cells in the Retinae of Salmon (Salmo salar) and Trout (Salmo trutta trutta) in Relation to Their Feeding Habits. Acta Zoologica, 57(1), 13-35.
    Archer, S. N., Djamgoz M. B. A., Loew, E. R., Patridge, J. C. & Vallerga, S. (1999). Adaptive Mechanisms in the Ecology of Vision. Great Britain: Kluwer Academic Publisher.
    Bhatt, V. S. (1970). Studies on the Growth of Ophicephalus striatus Bloch. Hydrobiologia, 36(1), 165-177.
    Bone, Q. & Moore, R. H. (2008). Sensory Systems, and Communication. In Q. Bone and R. H. Moore (Eds.), Biology of Fishes (pp. 289-345). New York, NY: Taylor & Francis Group.
    Boucher S. E. M. & Hitchcock, P. F. (1998). Insulin-Like Growth Factor-I Binds in the Inner Plexiform Layer and Circumferential Germinal Zone in the Retina of the Gold Fish. The Journal of Comparative Neurology, 394, 395-401.
    Browman, H. I., Gordon, W. C., Evans, B. I. & O’Brien, W. J. (1990). Correlation Between Histological and Behavioral Measures of Visual Acuity in a Zooplanktivorous Fish, the White Crappie (Pomoxis annularis). Brain Behavior and Evolution, 35, 85-97.
    Caves, E. M., Sutton T. T. & Johnson, S. (2017). Visual acuity in ray-finned fishes correlates with eye size and habitat. Journal of Experimental Biology, 220, 1586-1596.
    Champ, C., Wallis, G., Vorobyev, M. & Siebeck, U. (2014). Visual Acuity in a Species of Coral Reef Fish: Rhinecanthus aculeatus. Brain, Behavior and Evolution, 83, 31-42.
    Cohn, B. A., Collin, S. P., Wainwright, P. C. & Schmitz, L. (2015). Retinal Topography Maps in R: New Tools for the Analysis and Visualization of Spatial Retinal Data. Journal of Vision, 15(9), 1-10.
    Coimbra, J. P., Marceliano, M. L. V., Andrade-da-Costa, B. & Yamada, E. S. (2009). Number and Distribution of Neurons in the Retinal Ganglion Cell Layer in Relation to Foraging Behaviors of Tyrant Flycatchers. Journal of Comparative Neurology, 514, 66-73.
    Collin, S. P. (2008). A Web Based Archive for Topographic Maps of Retinal Cell Distribution in Vertebrates. Clinical and Experimental Optometry, 91(1), 85.
    Collin, S. P. & Pettigrew, J. D. (1989a). Quantitative Comparison of the Limits on Visual Spatial Resolution Set by the Ganglion Cell Layer in Twelve Species of Reef Teleosts. Brain Behavior and Evolution, 34, 184-192.
    Collin, S. P. & Pettigrew, J. D. (1989b). Retinal Topography in Reef Teleosts II. Some Species with Prominent Horizontal Streaks and High –Density Areae. Brain Behavior and Evolution, 31, 283-295.
    Collin, S. P. & Shand, J. (2003). Retinal Sampling and the Visual Field in Fishes. In S. P. Collin and N. J. Marshall (Eds.), Sensory Processing in Aquatic Environments (pp. 139-169). New York, NY: Springer.
    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. (2014). Visual Ecology. Princeton, NJ: Princeton University Press.
    Curcio, C. A., Sloan, K. R. & Meyers, D. (1989). Computer Methods for Sampling, Reconstruction, Display and Analysis of Retinal Whole Mounts. Vision Research, 29(5), 529-540.
    Das, S. M. & Saxena, D. B. (1956). Circulation of the Blood in the Respiratory Region of Fish Labeo robita and Ophicephalus striatus. Copeia, 1956(2), 100-109.
    Davson, H. (1980). Visual Acuity. In H. Davson (Ed.), Physiology of the Eye (4th ed., pp. 311-326). New York, NY: Academic Press, Inc.
    Douglas, R. H. & Hawryshyn, C. W. (1990). Behavioral Studies of Fish Vision: An Analysis of Visual Capabilities. In R. H. Douglas & M. B. A. Djamgoz (Eds.), The Visual System of Fish. London: Chapman and Hall, Ltd.
    Fite K. V. & Rosenfield-Wessels, S. (1975). A Comparative Study of Deep Avian Foveas. Brain, Behavior and Evolution, 12, 97-115.
    Fitzpatrick, D. & Mooney, R. D. (2012). Vision: The Eye. In D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A-S. LaMantia & L.E. White (Eds.), Neuroscience (5th ed., pp. 230-256). Sunderland, MA: Sinauer Assosiates, Inc.
    Froese, R. and D. Pauly. Editors. (2018). FishBase. World Wide Web electronic publication. www.fishbase.org, (10/2018). (2019/1/22).
    Garza-Gisholt E., Hemmi, J. M., Hart, N. S. & Collin, S. P. (2014). A Comparison of Spatial Analysis Methods for the Construction of Topography Maps of Retinal Ganglion Cell Density. PLOS ONE, 9(4), 1-15.
    Harkness, L. & Bennet-Clark, H. (1978). The Deep Fovea as a Focus Indicator. Nature, 272, 814-816.
    Harosi, F. I. & Hashimoto, Y. (1983). Ultraviolet Visual Pigment in a Vertebrate: A Tetrachromatic Cone System in the Dace. Science, 222(4627), 1021-1023.
    Hawryshyn, C. W. (1992). Polarization Vision in Fish. American Scientist. 80(2), 164-175.
    Hawryshyn, C. W. & Beauchamp, R. (1985). Ultraviolet Photosensitivity in Goldfish: An Independent U.V. Retinal Mechanism. Vision Research. 25(1), 11-20.
    Hitchcock, P. F. & Raymond, P. A. (2004). The Teleost Retina as a Model for Developmental and Regeneration Biology. Zebrafish, 1(3), 257-271.
    Howells, R. G., Williams, J. D. & Courtenay Jr., W. R. (2002). Snakeheads Represent an Increasing Threat to U.S. Waters. ANS Digest, 4(4), 37-41.
    Hughes, A. (1977). The Topography of Vision in Mammals of Constraining Life Style: Comparative Optics and Retinal Organization. In Crescitelli, F. (Ed.), Handbook of Sensory Physiology VII/5 (pp615-756). Berlin, Germay: Springer-Verlag.
    Johns, P. R. (1981). Growth of Fish Retinas. American Zoologist, 21, 447-458.
    Joselevitch, C. and Kamermans, M. (2009). Retinal Parallel Pathways: Seeing with Our Inner Fish. Vision Research, 49, 943-959.
    Kock, J. H. (1982). Neuronal Addition and Retinal Expansion During Growth of the Crucian Carp Eye. The Journal of Comparative Neurology, 209(3), 264-274.
    Kock, J. H., and Reuter, T. (1978). Retinal Ganglion Cells in the Crucian Carp (Carassius carassius). I. Size and Number of Somata in Eyes of Different Size. The Journal of Comparative Neuroscience, 179(3):535-547.
    Land, M. F. & Fernald, R. D. (1992). The Evolution of the Eye. Annual Review of Neurosciences, 15, 1-29.
    Landgren, E., Fritsches, K., Brill, R. and Warrant, E. (2014). The Visual Ecology of a Deep-Sea Fish, the Escolar Lepidocybium flavobrunneum (Smith, 1843). Philosophical Transactions of the Royal Society B, 369(1636): 20130039
    Lee, K.C. (2012). Reproductive Cycle and Food Compostition of an Exotic Snakehead Channa striata in Southern Taiwan. (Master Thesis, National Kaohsiung Normal University). Retrieved from https://ndltd.ncl.edu.tw/ (In Chinese).
    Lee, P. G. & Ng. P. K. L. (1994). The Systematics and Ecology of Snakeheads (Pisces: Channidae) in Penisular Malaysia and Singapore. Hydrobiologia, 285, 59-74.
    Locket, N. A. (1977). Adaptations to the Deep-Sea Environment. In F. Crescitelli (Ed.), Handbook of Sensory Physiology Vol. 7 Part5 (pp. 67-192). Berlin, Germany: Springer-Verlag.
    Lyall, A. H. (1957). Cone Arrangements in Teleost Retinae. Journal of Cell Science, 98, 189-201.
    Lythgoe, J. N. (1979). Vision Through Scattering Media. In J. N. Lythgoe (Eds.), The Ecology of Vision (pp. 112-127). New York, NY: Oxford University Press.
    Lythgoe, J. N. (1988). Light and Vision in the Aquatic Environment. In J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolag (Eds.), Sensory Biology of Aquatic Animals (pp. 57-82). New York, NY: Springer.
    Maarten, K., Hawryshyn, C. (2011). Teleost Polarization Vision: How It Might Work and What It Might Be Good For. Philosophical Transactions of the Royal Society B, 366, 742-756.
    Marc, R. E., & Sperling, H. G. (1976). The Chromatic Organization of the Goldfish Retina. Vision Research, 16, 1211–1224.
    Marchiafava, P. L. & Boycott, B. B. (1985). Cell Coupling in Double Cones of the Fish Retina. Proceedings of the Royal Society B, 226, 211-215.
    Muz, F. W. & McFarland, W. N. (1973). The Significance of Spectral Position in the Rhodopsins of Tropical Marine Fishes. Vision Research, 13, 1829-1874.
    Nag, T. C. & Bhattacharjee, J. (2002). Retinal Cytoarchitecture in Some Mountain-stream Teleosts of India. Environmental Biology of Fishes, 63(4), 435-449.
    Nagloo, N., Collin, S. P., Hemmi, J. M. & Hart, N. S. (2016). Spatial Resolving Power and Spectral Sensitivity of the Saltwater Crocodile, Crocodylus porosus, and the Freshwater Crocodile, Crocodylus johnstoni. Journal of Experimental Biology, 219, 1394-1404.
    Neave, D. A. (1984). The Development of Visual Acuity in Larval Plaice (Pleuronectes platessa L.) and Turbot (Scophthalmus maximus L.). Journal of Experimental Marine Biology and Ecology, 77, 167-175.
    Neumeyer, C. (2003). Wavelength Dependence of Visual Acuity in Goldfish. Journal of Comparative Physiology A, 189(11), 811-821.
    Northmore, D. P. M, Oh, D. J. & Celenza, M. A. (2007). Acuity and Contrast Sensitivity of the Bluegill Sunfish and How They Change During Optic Nerve Regerneration. Visual Neuroscience, 24(3), 319-331
    Novales-Flamarique, I. & Hawryshyn, C. W. (1998). Photoreceptor Types and Their Relation to the Spectral and Polarization Sensitivities of Clupeid Fishes. Journal of Comparative Physiology A, 182, 793-803.
    Ofri, R. (2014). Optics and Physiology of Vision. In K. N. Gelatt (Ed.), Essentials of Veterinary Ophthalmology (3rd ed., pp. 55-65). Hoboken, NJ: Willey-Blackwell.
    Olivera, F. G., Coimbra, J. P., Yamada, E. S., Montag, L. F., Nascimento, F. L., Olivera, V. A., da Mota, D. L., Bitterncourt, A. M, da Silva, V. L. and da Costal, B. L. (2006). Topographic Analysis of the Ganglion Cell Layer in the Reina of the Four-Eyed Fish Anableps anableps. Visual Neuroscience, 23(6), 879-886.
    Pumphrey, R. J. (1948). The Theory of Fovea. Journal of Experimental Biology, 25, 299-312.
    Qin, J., and Fast, A. W. (1996). Size and Feed Dependent Cannibalism with Juvenile Snakehead Channa striatus. Aquaculture, 144, 313-320.
    Qin, J., Fast, A. W., & Kai, A.T. (1997). Tolerance of Snakehead Channa Striatus to Ammonia at Different pH. Journal of the World Aquaculture Society, 28(1), 87-90.
    Querubin, A., Lee, H. R., Provis, J. M. & O’Brien K. M. (2009). Photoreceptor and Ganglion Cell Topographies Correlated with Information Convergence and High Acuity Regions in the Adult Pigeon (Columba livia) Retina. Journal of Comparative Neurology, 517(5), 711-722.
    Recket, F., Melzer, R. R. & Smola, U. (2001). Outer Retinal Fine Structure of the Garfish Belone belone (L.) (Belonidae, Teleostei) During Light and Dark Adaptation – Photorecptors, Cone Patterns and Densities. Acta Zoologia, 82, 89-105.
    Robinson, J., Schmitt, E. A., Hárosi, F. I., Reece, R. J. and Dowling, J. E. (1993). Zebrafish Ultraviolet Visual Pigment: Absorption Spectrum, Sequence and Location. Proceedings of the National Academy of Sciences, 90(13), 6009-6012.
    Sabbah, S., Laria, R. L., Gray, S. M. & Hawryshyn, C. W. (2010). Functional Diversity in the Color Vision of Cichlid Fishes. BMC Biology, 8:133.
    Shao, K. T. Taiwan Fish Database. World Wide Web electronic publication. http://fishdb.sinica.edu.tw, (2019-1-22)
    Smodlaka, H., Khamas, W. A., Palmer, L., Lui., B., Borovac, J. A., Cohn, B. A. & Schmitz L. (2016). Eye Histology and Ganglion Cell Topography of Northern Elephant Seals (Mirounga angustirostris). The Anatomical Record, 299, 798-805.
    Stell, W. K., Ishida, A. T. and Lightfoot, D. O. (1977). Structural Basis for on-and off-Center Responses in Retinal Bipolar Cells. Science, 198(4323):1269-1271.
    Sterratt, D. C., Lyngholm, D., Willshaw, D. J. and Thompson, I. D. (2013). Standard Anatomical and Visual Space for the Mouse Retina: Computational Reconstruction and Transformation of Flattened Retinae with the Retistuct Package. PLOS Computational Biology, 9(2), 1-10.
    Temple, S., Hart, N. S., Marshall, N. J. and Collin, S. P. (2010). A Splitting Image: Specializations in Archerfish Eyes for Vision at the Interface Between Air and Water. Proceedings of the Royal Society B, 277, 2607-2615.
    Temple, S., Manietta, D. & Collin, S. P. (2013). A Comparism of Behavioral (Landolt C) and Anatomical Estimates of Visual Acuity in Archerfish (Toxotes chatareus). Vision Research, 83, 1-8.
    Ullmann, J. F. P., Moore, B. A., Temple, S. E., Fernández-Juricic, E. and Collin, S. P. (2012). The Retinal Wholemount Technique: A Windows to Understand the Brain and Behavior. Brain Behavior and Evolution, 79, 26-44.
    Walker, M. H. (1978). Food and Feeding Habits of Lethrinus chrysostomus Richardson (Pisces: Perciformes) and Other Lethrinids on the Great Barrier Reef. Australian Journal of Marine and Fresheater Research, 29, 623-630.
    Wagner, H-J. (1990). Retinal Structure of Fishes. In R. Douglas, M. Djamgos. (Eds.) The Visual System of Fish (pp. 109-157). Dordrecht, Netherlands: Springer.
    Wang, H. H. (2013). Retinal Ganglion Cell Distribution and Visual Acuity in Alpacas (Vicugna pacos) (Mater Thesis, Colorado State University). Retrieved from https://mountainscholar.org/bitstream/handle/10217/81060/Wang_colostate_0053N_12061.pdf?sequence=1
    Wang, T. S., Hsueh, M. L. & Chang, S. T. (2010). A Key to the Species of the Genus Channa (Channidae: Teleostei) of Taiwan with Description of a Ventral Fin Abnormal Specimen of Channa striata (Bloch, 1793). Taiwan Journal of Biodiversity, 12(4), 419-426.
    Weber, A. J., Kaufman, P. L. & Hubbard, W. C. (1998). Morphology of Single Ganglion Cells in the Glaucomatous Primate Retina. Investigative Ophthalmology and Visual Science, 39(12), 2304-2320.
    Williamson, M. & Keast, A. (1987). Retinal Structure Relative to Feeding in the Rock Bass (Amboplites rupestris) and Bluegill (Lepomis macrochirus). Journal of Zoology, 66(12), 2840-2846.
    Vakkur, G.J. & Bishop, P.O. (1963). The Schematic Eye in the Cat. Vision Research, 61(7), 357-381.
    van der Meer, H. J. (1994). Ontogenetic Change of Visual Thresholds in the Cichlid Fish Haplochromis sauvagei. Brain Behavior and Evolution, 44, 40-49.
    Vishwanath, W. & Geetakumari, Kh. (2009). Diagnosis and Interrelationships of Fishes of the Genus Channa Scopoli (Teleostei: Channidea) of Northeastern India. Journal of Threatened Taxa, 1(2), 97-105.
    Yamanouchi, T. (1956). The Visual Acuity of the Coral Fish Microcanthus strigatus (Cuvier Valenciennes). Publication of Seto Marine Biological Laboratory, 5, 133-156.
    Zaunrtiter, M., Junger, H. & Kotrschal, K. (1990). Retinal Morphology of Cyprinid Fishes: A Quantitative Histological Study of Ontogenetic Changes and Interspecific Variation. Vision Research, 31(3), 383-394.

    下載圖示 校內:2022-08-30公開
    校外:2022-08-30公開
    QR CODE