| 研究生: |
杜永昌 Tu, Yung-Chang |
|---|---|
| 論文名稱: |
單一破裂面內寬空間變異性對水流與溶質傳輸之影響 The Effect of Aperture Spatial Variance on Groundwater Flow and Solute Transport in a Single Fracture |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 破裂面內寬 、空間變異性 、序率方法 、相關尺度 |
| 外文關鍵詞: | Turning Bands, correlation scale, fracture aperture, stochastic approach, spatial variance |
| 相關次數: | 點閱:118 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討單一破裂面內寬空間變異性對水流與溶質傳輸特性的影響。文中結合序率方法之Turning Bands方法,探討內寬值效應與相關尺度效應對於其空間變異性之行為,並應用MODFLOW數值模式,探討單一破裂面內寬變異性對水流及溶質傳輸之影響,並與Amadei and Illangasekare (1992)所發展之岩石節理面水流與流場數值模式FLOWA.FOR的結果比對合理性。最後,應用前人實驗室實驗結果之案例來仿真模擬單一破裂面內寬之水流模式的量測與分析,並對數值模式進行模擬分析與結果討論。
應用MODFOLW數值模式模擬結果與Amadei and Illangasekare (1992)所發展模式模擬結果比較顯示,其水流結果相當吻合且水流路徑相當一致,亦驗證MODFLOW可適用模擬岩石破裂面內寬之水流情況。於探討破裂面內寬效應與破裂面內寬相關尺度效應,結果顯示內寬效應中存在複雜的異質性,使其水流通過之路徑變為複雜,內寬值越大,對於溶質傳輸之影響其濃度移動也隨之增快。
由於本文定義相關尺度為描述一隨機變數序列的相關關係,相關尺度越大代表一隨機變數與附近的隨機變數有較大的相關,破裂面內寬相關尺度大之方向,表示此方向之內寬相關性高且內寬變化小。若內寬相關尺度大之方向與水流方向一致時,其連通性高且易成為了滲流的路徑;反之,其與水流方向垂直時,則滲流之路徑增長且造成扭曲變大,使得水流流速緩慢。
在本文比較前人研究實驗案例之中,應用序率模擬方法產生內寬空間分佈場,若僅考慮平均值與標準差來決定整個模擬區域之內寬空間分佈,顯示經過模擬獲得內寬分佈情況與平均流速,和整體研究實驗量測獲得結果相當一致,唯模擬內寬分佈較平均分散;而實驗人工製成之裂面內寬,有分佈不均之現象,部分明顯集中於一區域,亦造成為水流聚集通過之路徑,導致實驗流場表現上與模式模擬結果再小區域之內寬與流速分布,有些微的差異性。
A stochastic approach using the Turning Bands Method was proposed to investigate the effect of aperture spatial variance and correlation scale on groundwater flow and solute transport in a single fracture. The Code MODFLOW is to analyze the influence between the flow and solute transport. Finally, real experiment results of Dijk et al. (1999,2002) is used to validate our simulated results.
In the thesis, a sensitivity case is provided to calibrate the reasonability of MODFLOW model by comparing the analytical model from Amadei and Illangasekare constructed in 1992. It shows that the results from MODFLOW quite coincides with those from Amadei and Illangasekare (1992). The heterogeneity and direction characteristics of the aperture affect flow behaviors. The larger the aperture, the faster the concentration velocity. As the direction of larger correlation scale of the aperture is the parallel to the flow direction, it has high flow paths and small aperture variance; otherwise, as the direction of larger correlation scale is the vertical to the flow direction, it has long path channel and high tortuosity.
By compared results of the real experiment and model simulation, it showed that under considering the same global mean and variance of aperture in both cases, the characteristics of flow velocity and aperture distribution are the same suitably. However, the larger flow paths of real experiment results exists apparently to converge in one region.
Amadei B, Illangasekare T, (1992) Analytical Solution for Steady and Transient Flow in No-homogeneous and Anisotropic Rock Joints, Int. J Rock Mech.Min.Sci&Geomech. Abstr.29, pp.561-572.
Amadei B, Illangasekare T, (1994) A Mathematical Model for Flow and Solute Transport in Non-homogeneous Rock Facture. Int. J.Rock Mech.Min.Sci&Geomech. Abstr.31, pp.719-731.
Amadei B, Illangasekare T, J.-F. Carlier, (1995) Effect of Turbulence On Facture Flow And Advective Transport Of Solutes. Int. J Rock Mech.Min.Sci&Geomech. Abstr.32, NO.4, pp.343-356.
Arturo A, Martin J, Paul V, (1999) Effect of facture aperture variations on the dispersion of contaminants. Water Resour Res., Vol.35, pp.55-63.
Aydlin A (2001) Fracture void structure: implication for flow, transport and deformation. Vol. 40, pp.672-677.
Berkowitz, B. and J. Zhou, (1996) Reactive solute transport in a single fracture. Water Resour Res., Vol .32, NO.4, pp.901-913.
Brown, S. R., (1987) Fluid Flow Thyough Rock Joint:The Effect of Surface Roughness, Journal of Geophysical Research92: pp.1337-1347.
Brown, S. R., (1995) Simple mathematical model of a rough fracture, J. Geophys. Res., Vol .100, NO.B4, pp.5491-5952.
Brown, S. R., H. W Stockman, and S. J. Reeves, (1995) Applicability of the Reynolds equation for modeling fluid flow between rough surfaces, Geophys. Res Lett., Vol .22, NO18, pp.2537-2540.
Cook, N. G. W., (1988) Nature joints in rock: Mechanical, hydraulic and seismic behavior and properties under normal stress, First Jaeger Memorial Lecture, 29th U.S Symposium on Rock Mechanics, reprint (1992) in Int. J. Rock Mech. Min. Sci. Geomech. Abs., 29, pp.198-223.
Delhomme, J.P., (1979) Spatial Variability and Uncertainty in Groundwater Flow Parameters: A Geostatistical Approach, Water Resour. Res., Vol.15, NO.2, pp.269-280.
Dijk, P. E., B. Berkowitz, and P. Bendel, (1999)Investigation of flow in a water-saturated rock fracture using nuclear magnetic resonance imaging(NMRI), Water Resour Res., Vol.35, NO.2, pp.347-360.
Dijk, P. E., and B. Berkowitz, (1998) Precipitation and dissolution of reactive solute in fracture, Water Resour Res., Vol.34, NO.3, PP.457-470.
Dijk, P. E., and B. Berkowitz, (1999) Three-dimensional flow measurement in rock fracture, Water Resour Res., Vol.35, NO.2, pp.3955-3960.
Dijk, P. E., and B. Berkowitz, (2000) Buoyancy-driven dissolution enhancement in rock fracture, Geology, Vol.28, NO.11, pp.1051-1054.
Dijk, P. E., and B. Berkowitz (2002) Measurement and analysis of dissolution patterns in rock fracture, Water Resour Res., Vol.38, NO.2, 10.1029/2001WR000246.
Ge, S., A(1997)A governing equation for fluid flow in rough fracture, Water Resour Res., Vol.33, NO.1, pp.53-61.
Gelhar, l. w., (1993) Stochastic Subsurface Hydrology, A simon and Schuster company, pp.26-30, pp. 333.
Glover P. W. J., Matsuki K., Hikma R., Hayashi K.,(1997) Fluid flow in fractally rough synthetic fractures, Geophys. Res Lett., Vol.24, NO.14, pp.1803-1806.
Gutfraid, R., and A. Hansen, (1995)Study of fracture permeability using lattice gas automata, Trans. Porous Media, Vol.18, pp.131-149.
Grace W. Su, Jil T. Geller, Karsten Pruess, James R. Hunt, (2001) Solute transport along preferential flow paths in unsaturated fractures, Water Resour Res., Vol.37, NO.10, pp.2481-2491.Hakami E, (1995) Aperture distribution of rock fractures. Ph.D. Thesis, Division of Engineering Geology, Royal Inst Tech, Stockholm.
Hakami E, Larsson E, (1996) Aperture measurements and flow experiments on a single natural fracture. Int J Rock Mech & Min Sci Vol.33, pp.395-404.
Hui-Chen Su and Wolfgang Kinzelbach, (2001) Application 2-D random genertors to the study of solute transport in fracture. Journal of the Chinese Institute of Engineers, Vol.24, NO3, pp397-403.
Kumar, A. T. A., P. Majors, and W. Rossen, (1997) Measurement of aperture and multiphase flow in fracture with NMR imaging , SPE Form. Eval., Vol.12, NO.2, pp.101-107.
Louis, C. (1969) A Study of Groundwater Flow in Jointed Rock and its Influence on The Stability of Rock Masses. Rock Mechanice Report, ImperialCollege, pp.90.
Nolte, D. D., N. G. W. Cook, and L. J. Pyrak-Nolte. (1989) The fractal geometry of flow paths in nature fracture in rock and the approach to percolation, Pure Appl. Geophys., Vol.131, NO.1-2, pp.111-138.
Novakoski, k. S., G. V. Evans, D. A. Lever, and K.G. Raven, (1985) A field example of measuring hydrodynamic dispersion in a single fracture, Water Resour Res., Vol.21, NO.8, pp.1165-1174.
Mourzenko, V. V., J.-F. Thovert, and P. M. Adler,(1995)Permeability of a single fracture: Validity of the Reynolds equation, J Phys.Ⅱ, NO.5, pp.465-482.
Matheron, G., (1962) Traite de Geostatistique Appliquee, Editions Techniq, Paries, Vol.1, pp.334, Vol.2, pp.172.
P W J Glover, K Matsuki, R Hikima, K Hayashi (1997) Fluid flow in fractally rough syntheticfactures Geophysical Research letters, Vol.24, NO.14, pp.1803-1806.
Raven, K. G., K. S. Novakoski, and P. A. Lapcevic,(1988)Interpretation of filed tracer tests of a single fracture using a transient solute storage model, Water Resour Res., Vol.24, NO.12, pp.2019-2023.
Stephen R. Brown, (1995) Simple mathematical model of a rough fracture. Journal Of Geophysical Research 100(B4), pp.5941-5992.
Tompson, A., R. Ababou, L. W. Gelhar, (1989) Implementation of the three-dimensional turning bands random field generator, Water Resour. Res., Vol.25, pp.2227-2243.
Tsang Y. W., and Tsang C. F, (1987) Channel model of flow through fractured media. Water Resour Res., Vol.23, pp.467-479.
Tsang Y. W., and Tsang C. F,(1989)Flow Channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium. Water Resour Res., Vol.25, NO.9, pp.2076-2080.
L. Moreno, Y. W. Tsang, C. F. Tsang, F. V. Hale, and I. Neretnieks, (1988)Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observation. Water Resour. Res., Vol.24, NO.12, pp.2033-2048.
Y. W. Tsang, C. F. Tsang, I. Neretnieks, and L.Moreno,(1988) Flow and tracer transport in a single fracture: a variable aperture channel model and its properties. Water Resour. Res., Vol.24, NO.12, pp.2049-2060.
Vandergraaf, T. T., (1995) Radionuclide migration experiments under laboratory condition, Geophys. Res Lett., Vol.22, NO.11, pp.1409-1412.
Watson, A. T., and C. T. P. Chang,(1997) Characterizing porous media with NMR methods, Prog. Nucl. Magn. Reson. Spectrosc., Vol.31, pp.343-386.
王建力、林宏奕(2000)岩石剪力破裂面粗糙度及其量測之研究,礦冶,Vol.44, NO.2, pp.155-163。
余進利,李振誥,林碧山,劉長齡,黃煌輝(1994) 反應性的污染物於破裂岩體裂縫網路遷移之研究,第七屆水利工程研討會,海洋大學,pp.E-237-E348。
李振誥、余進利(1991)節理與流動模型,地工技術雜誌,Vol.33, pp.68-82。
李振誥、余進利、陳榮華 (1992) 破碎岩體地下水流動與傳輸之探討,放射性核種遷移研討會,pp. 57-108。
李振誥、程繼民、余進利(1992) 質點於破裂面介質中傳輸情形之研究,礦冶,中國礦冶工程常會刊,Vol.36, No.2, pp.75-84。
李振誥、陳榮華、張瑞麟、余進利、劉長齡(1992) 破碎岩層地下水流及污染物傳輸模式之評選及應用於示範場址(I):流動與傳輸特性及模式之研究,原子能委員會81年度研究發展計劃成果發表會論文專輯pp.253-276。
李振誥(1992) 破碎岩體地下水流及污染物傳輸模式之評選及應用於示範場址(一)-流動與傳輸特性及模式之研究,原能會物管處委託研究報告。
李振誥(1993) 破碎岩層地下水流及污染物傳輸模式之評選及應用於示範場址(二)-破裂面幾何參數調查及傳輸延散度模式,原能會物管處委託研究報告。
李振誥、林碧山、吳育山(1993) 破裂岩體地下水流動模式礦冶,中國礦冶工程學會會刊,1993年。
李振誥、程繼民、劉文忠(1993) 破碎岩體破裂面之水文地質參數對質點傳輸延散度影響之研究,土木水利,1993年
李振誥、林碧山(1993) 破裂面幾何參數對質點傳輸延散作用之研究,台灣水利,Vol.41, NO.4, pp.75-89。
李振誥(1994) 破碎岩層地下水流及污染物傳輸模式之評選及應用於示範場址(三)-破裂岩體破裂面幾何參數調查及污染物傳輸研究,原能會物管處委託研究報告。
李振誥、張瑞麟、陳榮華、林碧山、余進利、劉長齡(1993) 破碎岩層地下水流及汙染物傳輸模式之評選及應用於示範場址(II):破裂面幾何參數調查及傳輸延散度模式,原子能委員會82年度研究發展計劃成果發表會論文專輯。
李振誥、張瑞麟、陳榮華、林碧山、余進利、劉長齡(1994) 破碎岩層地下水流及污染物傳輸模式之評選及應用於示範場址(III):破裂面幾何參數調查及污染物傳輸模式,原子能委員會83年度研究發展計劃成果發表會論文專輯。
李振誥、余進利、張瑞麟、鄧博維、林碧山、吳育生(1994) 岩體節理統計特性及其對質點傳輸延散作用之研究,地下水資源及水質保護研討會及水質保護研討會及放射性核種遷移研討會,pp.69-91。
李振誥、陳榮華、林碧山(1995) 正交破裂面傳輸模式應用於蘭嶼儲
存場破裂安山岩體中污染物傳輸之研究,中國環境工程學刊,Vol.5, NO.2, pp.149-160。
杜永昌、李振誥(2002) 破裂岩體內寬之空間變異性對水流與傳輸行為之影響,pp.N-46-N-50。
張善順、陳榮華、李振誥(1996) 破裂岩層發散型示蹤劑試驗之模式分析,1996岩盤工研討會論文集,台灣大學,pp.561-570。
劉烽收、李振誥、陳志忠、劉俊達(1996) 蘭嶼貯存場場區表層滲透性質空間分佈之研究,第八屆水利工程研討會,台灣大學。
陳榮華、張善順、李振誥、陳寒濤 (1998) 破裂岩層中溶質傳輸之徑向延散模式分析及應用於示蹤劑試驗,礦冶,Vol.42, NO.2, pp.115-126。
陳榮華、李振誥 (1999) 破裂岩體中節理幾何參數與水力參數相關性之研究,礦冶,Vol.43, NO.4, pp.75-87。
陳榮華、葉義章、林宏奕、李振誥 (2000) 岩石單一裂隙之水力參數與傳輸參數探討,2000岩盤工程研討會,國立中興大學。
趙振宇(1999)岩石節理面力學性質與導水性偶合行為研究,國立台灣大學土木工程研究所博士論文。