簡易檢索 / 詳目顯示

研究生: 李紹鈺
Lee, Shao-Yu
論文名稱: 利用生物降解水中MIB可行性之研究:降解菌分離及降解效率比較
Biodegradation of 2-methylisoborneol in water: Bacteria Isolation and Degradation Efficiency
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 2-methylisoborneol(2-MIB)生物降解水處理霉味
外文關鍵詞: biodegradation, 2-methylisoborneol(2-MIB), kinetic, taste and odor compound, water treatment
相關次數: 點閱:115下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 原水中的霉味物質2-methylisoborneol(2-MIB)為藍綠菌生長的代謝物,是造成飲用水口感不佳的原因之一,雖研究證實此物質對人體無健康危害之風險,然嗅味問題會影響民眾對自來水的信心,因此解決水中臭味問題,為現代自來水處理中重要的一環。目前臺灣常用的傳統淨水處理程序,無法有效去除2-MIB,文獻指出生物處理可促進2-MIB的降解,因此若要發展及應用生物處理法,分離環境水體中的降解菌是一個重要的步驟。
    本研究從臺灣具有高濃度2-MIB之水庫中,成功分離出其中三株對2-MIB標準品具有良好降解能力之降解菌,根據16S rRNA的定序結果判斷分別是Methylobacterium sp. LT, Methylobacterium sp. PA以及Methylophilus sp.,並比較三者在批次反應器中,對2-MIB的降解特性及降解效率。三者於高濃度(20 µg/L)的形況下,都可在一周內去除70%至80%的2-MIB,顯示生物降解在處理2-MIB臭味物質的潛力。然而未來若要用於水廠處理程序中,尚需以真實環境體系,包括水體的2-MIB、背景物質、及有機物等對降解菌之影響,此外可加強分離環境中具有降解能力之微生物,以找出效能好之降解菌。
    本研究並建立了一套以PMA前處理,搭配即時定量聚合酶鏈鎖反應的方法,能快速定量反應器中活的細菌量的方法,可大量減少固態培養基的使用,並節省時間、降低利用濁度判讀產生的誤差。

    2-methylisoborneol (2-MIB), a musty odor compound produced by cyanobacteria, is a major cause of odor problem in drinking water of Taiwan. Although they are not considered harmful to human health, these compounds may still cause the perception of drinking water and need to be controlled. Unfortunately, 2-MIB is difficult to be removed by conventional water treatment processes. Biodegradation of 2-MIB was found to be an effective process for water treatment in serval studies. In this study, three bacterial strains were isolated for the degradation of 2-MIB, from different reservoirs in Taiwan, and were determined as Methylobacterium sp. LT, Methylobacterium sp. PA and Methylophilus sp., based on 16S rRNA analysis. Based on the experimental results, the removal efficiencies of 2-MIB by the three strains in batch scale reactors were in the range of 70% to 80% in one week. A pseudo-first order reaction model was able to describe the degradation of 2-MIB at an initial concentration of 20 µg/L, with rate constants of from 0.23 to 0.32 d-1. The results of this study suggest that biodegradation of 2-MIB is a potential method to remove 2-MIB in drinking water treatment.

    摘要 I Extended Abstract II 致謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 飲用水中的常見臭味物質 3 2.1.1 藍綠細菌所產生之臭味問題 4 2.1.2 2-MIB生成機制 6 2.2 臭味物質的處理程序 8 2.2.1 水源控制 8 2.2.2 傳統程序 8 2.2.3 傳統氧化劑應用 9 2.2.4 活性碳及高級氧化法 9 2.2.5 生物處理 10 2.2.6 2-MIB降解路徑 11 2.3 臭味物質的分析方法 14 2.3.1 化學分析法 14 2.3.2 官能評價法 16 2.4 分子生物技術 19 2.4.1 聚合酶鏈鎖反應PCR 19 2.4.2 即時定量聚合酶鏈鎖反應qPCR 20 2.4.3 活菌聚合酶鏈鎖反應(viability PCR) 23 2.4.4 高解析熱熔解分析(high-resolution melt, HRM) 26 2.5 微生物分離 29 第三章 實驗設備與方法 31 3.1 研究架構流程 31 3.2 2-MIB降解菌之培養 32 3.2.1 實驗試劑與設備 32 3.2.2 富集培養實驗 32 3.2.3 菌落分離實驗 35 3.3 DNA萃取 36 3.3.1 實驗試劑與設備 36 3.3.2 樣品前處理流程 36 3.3.3 DNA之萃取流程 37 3.4 聚合酶鏈鎖反應PCR 39 3.4.1 實驗試劑與設備 39 3.4.2 實驗流程 39 3.5 DNA純化 40 3.5.1 實驗試劑與設備 40 3.5.2 實驗流程 40 3.6 限制性片段長度多態性(Restriction Fragment Length Polymorphism, RFLP) 42 3.6.1 實驗試劑與設備 42 3.6.2 實驗流程 42 3.7 分子選殖(Cloning) 43 3.7.1 實驗試劑與設備 43 3.7.2 實驗前準備 43 3.7.3 實驗流程 44 3.8 活菌即時定量聚合酶鏈鎖反應(viable PCR) 45 3.8.1 實驗試劑與設備 45 3.8.2 PMA前處理 45 3.8.3 實驗流程 46 3.9 臭味物質的化學分析(SPME+GC/MS) 48 3.9.1 實驗試劑與設備 48 3.9.2 實驗流程 48 第四章 結果與討論 50 4.1 實驗方法建立 50 4.1.1 利用分子生物技術定量降解菌 50 4.1.2 臭味物質分析 56 4.2 2-MIB降解菌分離、培養與鑑定 60 4.2.1 分離結果 62 4.2.2 定序比對結果 66 4.3 降解試驗 70 4.3.1 第一次分離之菌株降解結果 70 4.3.2 第二次分離之菌株降解結果 78 第五章 結論與建議 89 5.1 結論 89 5.2 建議 90 第六章 參考文獻 91

    Arya, M., Shergill, I. S., Williamson, M., Gommersall, L., Arya, N., & Patel, H. R. (2005). Basic principles of real-time quantitative PCR. Expert review of molecular diagnostics, 5(2), 209-219.
    Ashitani, K., Hishida, Y., & Fujiwara, K. (1988). Behavior of musty odorous compounds during the process of water treatment. Water Science and Technology, 20(8-9), 261-267.
    Boleda, M. R., A. Díaz, I. Martí, J. Martín-Alonso, L. Matia, J. Romero & F. Ventura (2007). "A review of taste and odour events in Barcelona's drinking water area (1990–2004)." Water Science & Technology 55(5): 217.
    Burlingame, G. A., Suffet, I. H., Khiari, D., & Bruchet, A. L. (2004). Development of an odor wheel classification scheme for wastewater. Water Science and Technology, 49(9), 201-209.
    Dravnieks, A., & O'Donnell, A. (1971). Principles and some techniques of high-resolution headspace analysis. Journal of Agricultural and Food Chemistry, 19(6), 1049-1056.
    Falconer, I. R. (1996). Potential impact on human health of toxic cyanobacteria. Phycologia, 35(6S), 6-11.
    Fechner, G. T. (1859). Uber ein psychophysisches grundgesetz und dessen beziehung zur schatzung der sterngrossen.
    Giglio, S., Chou, W. K. W., Ikeda, H., Cane, D. E., & Monis, P. T. (2010). Biosynthesis of 2-methylisoborneol in cyanobacteria. Environmental science & technology, 45(3), 992-998.
    Gilchrist, J. E., Campbell, J. E., Donnelly, C. B., Peeler, J. T., & Delaney, J. M. (1973). Spiral plate method for bacterial determination. Applied microbiology, 25(2), 244-252.
    Glaze, W. H., Schep, R., Chauncey, W., Ruth, E. C., Zarnoch, J. J., Aieta, E. M., Tate, Carol H., McGuire, M. J. (1990). Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply. Journal (American Water Works Association), 79-84.
    Guttman, L. & J. van Rijn (2012). "Isolation of bacteria capable of growth with 2-methylisoborneol and geosmin as the sole carbon and energy sources." Appl Environ Microbiol 78(2): 363-370.
    Gorecki, T., Yu, X., & Pawliszyn, J. (1999). Theory of analyte extraction by selected porous polymer SPME fibres. Analyst, 124(5), 643-649.
    Hsieh, S. T., Lin, T. F., & Wang, G. S. (2010). Biodegradation of MIB and geosmin with slow sand filters. Journal of Environmental Science and Health Part A, 45(8), 951-957.
    Izaguirre, G., Wolfe, R. L., & Means, E. G. (1988). Degradation of 2-methylisoborneol by aquatic bacteria. Applied and Environmental microbiology, 54(10), 2424-2431.
    Izaguirre, G. & W. D. Taylor (2007). "Geosmin and MIB events in a new reservoir in southern California." Water Science & Technology 55(5): 9.
    Hayes, K. P., & Burch, M. D. (1989). Odorous compounds associated with algal blooms in South Australian waters. Water Research, 23(1), 115-121.
    Krasner, S. W. (1988). Flavor-profile analysis: an objective sensory technique for the identification and treatment of off-flavors in drinking water. Water Science and Technology, 20(8-9), 31-36.
    Korategere, V., Atasi, K., Linden, K., Stefan, M., Suffet, M., & Royce, A. (2004). Evaluation of two advanced oxidation technologies for the removal of organic and organoleptic compounds: a pilot study. In American Water Works Association, Annual Conference.
    Komatsu, M., Tsuda, M., Omura, S., Oikawa, H., & Ikeda, H. (2008). Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proceedings of the National Academy of Sciences, 105(21), 7422-7427.
    Lauderdale, C. V., Aldrich, H. C., & Lindner, A. S. (2004). Isolation and characterization of a bacterium capable of removing taste-and odor-causing 2-methylisoborneol from water. Water research, 38(19), 4135-4142.
    Lalezary, S., Pirbazari, M., & McGuire, M. J. (1986). Oxidation of five earthy-musty taste and odor compounds. Journal (American Water Works Association), 62-69.
    Lin, T. F., Wong, J. Y., & Kao, H. P. (2002). Correlation of musty odor and 2-MIB in two drinking water treatment plants in South Taiwan. Science of the Total Environment, 289(1), 225-235.
    Mastrangelo, C. H. (1997). Adhesion-related failure mechanisms in micromechanical devices. Tribology Letters, 3(3), 223-238.
    Ma, N., G. Luo, H. Tan, L. Li & X. Wang (2015). "Removal of geosmin and 2-methylisoborneol by bioflocs produced with aquaculture waste." Aquaculture International 24(1): 345-356.
    Medsker, L. L., D. Jenkins, & J. F. Thomas. 1968. Odorous compounds in natural waters. An earthy-smelling compound associated with blue-green algae and actinomycetes. Environ. Sci. Technol. 2:461–464.
    Pouria, S., de Andrade, A., Barbosa, J., Cavalcanti, R. L., Barreto, V. T. S., Ward, C. J., Preiser, W., Poon, G. K., Neild, G. H., Codd, G. A. (1998). Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet, 352(9121), 21-26.
    Popalisky, J. R., Pogge, F., & Mc Murtrey, D. (1975). Analytical Instrumentation: A Tool for Solving Taste and Odor Problems in Water Treatment. In AWWA Ann. Conf., Atlanta, Ga..
    Persson, P. E. (1988). Odorous algal cultures in culture collections. Water Science and Technology, 20(8-9), 211-213.
    Rubin H E, Alexander M. (1983). Effect of nutrients on the rates of mineralization of trace concentrations of phenol and p-nitrophenol. Environmental Science & Technology, 17(2): 104–107.
    Rashash, D. M., Hoehn, R. C., Dietrich, A. M., Grizzard, T. J., & Parker, B. C. (1996). Identification and control of odorous algal metabolites. AWWA Research Foundation, Denver, CO.
    Rosenfeldt, E. J., Melcher, B., & Linden, K. G. (2005). UV and UV/H2O2 treatment of methylisoborneol (MIB) and geosmin in water. Journal of Water Supply: Research and Technology-AQUA, 54(7), 423-434.
    Rodr’guez-Conceptio’n, M., & A. Boronat. (2002). Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130:1079–1089.
    Westerhoff P, Rodriguez-Hernandez M, Baker L, Sommerfeld M. (2005). Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Research, 39(20): 4899–4912
    Saito, A., Tokuyama, T., Tanaka, A., Oritani, T., & Fuchigami, K. (1999). Microbiological degradation of (-)-geosmin. Water research, 33(13), 3033-3036.
    Safferman, R. S., A. A. Rosen, C. I. Mashni, & M. E. Morris. (1967). Earthy-smelling substance from a blue-green alga. Environ. Sci. Technol. 1:429–430.
    Sumitomo, H. D. o. E. a. S. E., Kyoto University, Yoshida Honmachi, Sakyo-Ku, Kyoto 606 (Japan)) (1992). "Biodegradation of 2-methylisoborneol by gravel sand filtration." v. 25.
    Suffet, I. M., Khiari, D., & Bruchet, A. (1999). The drinking water taste and odor wheel for the millennium: beyond geosmin and 2-methylisoborneol. Water Science and Technology, 40(6), 1-13.
    Tabachek, J. A. L., & Yurkowski, M. (1976). Isolation and identification of blue-green algae producing muddy odor metabolites, geosmin, and 2-methylisoborneol, in saline lakes in Manitoba. Journal of the Fisheries Board of Canada, 33(1), 25-35.
    Valasek, M. A., & Repa, J. J. (2005). The power of real-time PCR. Advances in physiology education, 29(3), 151-159.
    Wang, S., & Levin, R. E. (2006). Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. Journal of Microbiological Methods, 64(1), 1-8.
    Yuan, R., B. Zhou, C. Shi, L. Yu, C. Zhang & J. Gu (2012). "Biodegradation of 2-methylisoborneol by bacteria enriched from biological activated carbon." Frontiers of Environmental Science & Engineering 6(5): 701-710.
    Yuan, B., Xu, D., Li, F., & Fu, M. L. (2013). Removal efficiency and possible pathway of odor compounds (2-methylisoborneol and geosmin) by ozonation. Separation and Purification Technology, 117, 53-58.
    Zoschke, K., Dietrich, N., Bornick, H., & Worch, E. (2012). UV-based advanced oxidation processes for the treatment of odour compounds: efficiency and by-product formation. Water research, 46(16), 5365-5373.
    Zini, C. A., Augusto, F., Christensen, E., Caramao, E. B., & Pawliszyn, J. (2002). SPME applied to the study of volatile organic compounds emitted by three species of Eucalyptus in situ. Journal of agricultural and food chemistry, 50(25), 7199-7205.
    林財富、顏宏愷,2016,公共給水有害藻類及代謝物監測與緊急應變處理技術之研究 (MOEAWRA1050321),經濟部水利署。
    環境檢驗所,(2005),水中土霉味物質Geosmin及2-Methylisoborneol檢測方法-固相微萃取/頂空/氣相層析質譜儀法,NIEA W537.51B,行政院環境保護署。

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE