簡易檢索 / 詳目顯示

研究生: 江承翰
Chiang, Cheng-Han
論文名稱: 21700鋰電池模組熱管理之實驗及模擬研究
Simulation and Experiment of Thermal Management with Liquid Cooling for 21700 Power Battery Module
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 115
中文關鍵詞: 鋰電池模組熱管理發熱量量測水冷系統溫測實驗
外文關鍵詞: Lithium-ion battery module, Thermal management, Heat generation rates, Water cooling, Thermal experiment
相關次數: 點閱:156下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將針對商用21700圓柱型鋰離子電池芯進行發熱量量測,利用自行設計治具來建立發熱量量測平台,藉由量測的溫度曲線來計算出單電池芯於1C、1.5C及2C放電時的發熱量。
    接著本文將設計由28顆21700所組成的58.8V動力型鋰電池模組並搭配水冷散熱系統作為熱管理,且針對此2P14S之電池模組進行電場與熱流場的模擬分析,以數值方法求解電場和熱流場。
    最後將電池模組與水冷散熱系統建立完成,並量測電池模組內特定監測點於各C-rate放電情況下之溫度,以及觀察改變水冷流速後所造成的溫度影響,再將其溫度數據進行比較和討論,改善出最佳的電池熱管理系統。

    In this study, a thermal measurement equipment was designed and applied to the commercial 21700 cylindrical lithium-ion battery to conduct thermal measurement. With the recorded temperature profile, the heat generation of single battery cell discharging at 1C, 1.5C and 2C can be calculated. Afterwards, the 58.8V power lithium battery module consisted of 28 21700 battery cell was combined with water cooling system to do the thermal management. In addition, the 2P14S battery module was applied to conduct electric field, flow and thermal field simulation which was analyzed by using the numerical method. As the battery module and water cooling system were established, the temperature of the battery module in each C-rate discharge can be measured. The temperature variation caused by the change of water cooling flow rate was also an important observation. With the comparison and discussion of the temperature record, the previous problem is improved and the best battery thermal management system is established.

    摘要 II ABSTRACT III 致謝 XIV 目錄 XV 表目錄 XIX 圖目錄 XXI 符號索引 XXV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與目的 2 1.2.1 單電池芯發熱量實驗 2 1.2.2 電池模組熱管理分析 3 1.3 文獻回顧 4 1.4 鋰離子電池基本介紹 4 1.4.1 電池類型及專有名詞解釋 4 1.4.2 電池管理系統(BMS) 5 1.4.3 電池熱失控(Thermal Runaway) 5 1.4.4 常見的電池熱管理系統 6 第二章 鋰離子電池發熱量計算實驗 12 2.1 實驗規劃與治具設計 12 2.2 熱傳理論與分析方法 13 2.2.1 能量守恆定律(law of conservation of energy) 13 2.2.2 塊狀熱容法(lump-heat capacity method) 13 2.2.3 總熱傳係數(overall heat transfer coefficient) 14 2.2.4 電池發熱量(heat generation rate for battery) 14 2.2.5 最小平方法(The method of least squares) 15 2.3 實驗設備與模擬軟體 16 2.3.1 K-type熱電偶 16 2.3.2 34972A 資料擷取切換器與34901A 20通道多工器 16 2.3.3 ice point™ Calibration Reference Chamber冰點校正器 16 2.3.4 TL-WELD點焊機 17 2.3.5 GPS-3303電源供應器與陶瓷加熱片 17 2.3.6 EBD-A40L電池容量測試儀 17 2.3.7 COMSOL Multiphysics軟體 17 2.4 實驗結果與比較 18 2.4.1 保麗龍治具之總熱傳係數 18 2.4.2 金屬治具之總熱傳係數 18 2.4.3 模擬驗證總熱傳係數與降溫曲線關係 18 2.4.4 單電池芯在各C-rate放電之發熱量 19 第三章 電池模組模型建立與模擬分析 43 3.1 物理模型建立 43 3.1.1 模型尺寸及觀測點編號設定 43 3.1.2 材料參數 43 3.2 電場模擬分析 44 3.2.1 ANSYS Multiphysics簡介 44 3.2.2 模擬設定流程 44 3.2.3 電場模擬結果 45 3.3 熱流場模擬分析 45 3.3.1 FloTHERM 簡介 45 3.3.2 模擬設定流程 46 3.3.3 熱流場模擬結果 46 第四章 電池模組溫測實驗 76 4.1 實驗規劃及目標 76 4.2 實驗設備介紹 76 4.2.1 RM3548微歐姆計與BT3562電池內阻測試器 77 4.2.2 打線接合(Wire bonding)設備 77 4.2.3 GW GPR-7525HD電源供應器 77 4.2.4 GW PEL-3111直流電子負載機 77 4.2.5 YEONG SHIN P-50恆溫循環水槽與微型無刷潛水泵浦 78 4.2.6 NW10-TTN電子式流量計 78 4.2.7 電池保護板 78 4.3 實驗結果與比較 78 4.3.1 1C放電實驗結果 78 4.3.2 1.5C放電實驗結果 79 4.3.3 2C放電實驗結果 79 4.3.4 0.5C充電實驗結果 79 第五章 結果與討論 108 5.1 發熱量實驗檢討 108 5.2 模組實驗與模擬比較 109 5.3 模組設計與實驗檢討 109 第六章 總結 113 參考文獻 114

    [1] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric," Journal of Power Sources, vol. 226, pp. 272-288, 2013.
    [2] 洪俊睿, 葉勝發 and 謝登存, "大型高能量密度鋰電池開發," 工業材料雜誌, no. 303, pp. 74-85, 2012.
    [3] S. A. Khateeb, M. M. Farid, J. Selman and S. Al-Hallaj, "Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter," Journal of Power Sources, vol. 128, no. 2, pp. 292-307, 2004.
    [4] 黃可龍, 王兆翔 and 劉素琴, 鋰離子電池原理與技術, 五南圖書, 2010.
    [5] 溫書賢 and 游國輝, "汰役鋰電池模組性能測試驗證," 機械工業, no. 409, pp. 53-60, 2017.
    [6] 朱璨雍, 王義文, 溫家元 and 徐啟銘, "鋰離子電池驅動之電動設備潛在熱危害評估," 勞工安全衛生研究季刊, vol. 20, no. 3, pp. 372-382, 2012.
    [7] 鄭錦淑, 楊長榮 and 許榮木, "高安全性鋰電池材料," 工業材料雜誌, no. 275, pp. 77-82, 2009.
    [8] 饒中浩, 电池热管理, 科學出版社, 2015.
    [9] A. Mills and S. Al-Hallaj, "Simulation of passive thermal management system for lithium-ion battery packs.," Journal of Power Sources, vol. 141, no. 2, pp. 307-315, 2005.
    [10] J. S. Hong, H. Maleki, S. Al Hallaj, L. Redey and J. R. Selman, "Electrochemical-calorimetric studies of lithium-ion cells.," Journal of the Electrochemical Society, vol. 145, no. 5, pp. 1489-1501, 1998.
    [11] L. D and S. T., "A review of hazards associated with primary lithium and lithium-ion batteries," Process Safety and Environmental Protection , vol. 89, no. 6, pp. 434-442, 2011.
    [12] 凌桂龍, ANSYS Workbench 15.0從入門到精通, 清華大學出版社, 2014.
    [13] 李波, FloTHERM軟件基礎與應用實例, 水利電力出版社, 2014.
    [14] K. Chen, Heat Generation Measurements of Prismatic Lithium Ion Batteries, Master's Thesis. University of Waterloo., 2013.
    [15] T. M. Bandhauer, S. Garimella and T. F. Fuller., "A critical review of thermal issues in lithium-ion batteries," Journal of the Electrochemical Society, vol. 158, no. 3, pp. R1-R25, 2011.
    [16] K. K. Parsons, "Design and Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs on an Unmanned Ground Vehicle," Journal of Thermal Science and Engineering Applications, vol. 9, 2016.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE