簡易檢索 / 詳目顯示

研究生: 林欣穎
Lin, Hsin-Ying
論文名稱: 摻銅氧化鋅奈米結構之化學氣相成長及物性研究
Growth and Physical Properties of Cu doped ZnO Nanostructures by Chemical Vapor Deposition
指導教授: 劉全璞
Liu, Chuan-Pu
共同指導教授: 王瑞琪
Wang, Ruey-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 108
中文關鍵詞: 氧化鋅化學氣相成長
外文關鍵詞: ZnO, CVD
相關次數: 點閱:87下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於此研究中,吾人為首度藉由氧化緩衝層的輔助下以熱化學氣相沉積成長具p-type電性及稀磁性質之摻銅氧化鋅薄膜、奈米陣列結構,以及新穎的奈米豆莢結構。藉由原子力顯微鏡、高解析穿透式電子顯微鏡的觀察與X-ray繞射分析,可知當前驅物濃度於較低及較高的情況下進行成長,將可成功合成出具原子級平坦度的p-type 摻銅氧化鋅薄膜及奈米線(柱)陣列結構,且此些結構沿c軸作優選成長,並具有非常好的結晶性質。此外,藉由前驅物濃度比例的調控,可開發出新穎的奈米豆莢結構,並具有罕見的藍光特性,文中我們亦對其成長機制作可能性的機制探討。另外,吾人亦藉由霍爾效應及磁性的量測解析多樣的摻銅氧化鋅奈米結構,由其結果可知一價銅(Cu+)的摻雜濃度對於形成p-type電性有直接的影響,而二價銅(Cu2+)的摻雜濃度及銅摻雜所誘發的缺陷濃度對於室溫光性及稀鐵磁性質有很大的影響。有鑒於此,若我們能將此富功能性的氧化鋅奈米材料應用於各式光電奈米元件,則可大幅提升元件的應用效能。

    In this research, we demonstrate the fabrication of Cu doped ZnO films, nanowire arrays and novel pearl-chain nanostructures with p-type conduction and dilute magnetic properties by chemical vapor deposition (CVD) for the first time. Atomic force microscopy, high-resolution transmission electron microscopy and X-ray diffraction patterns show that the p-type Cu:ZnO films synthesized at low precursor concentration have atomic-scale flat surface and single-crystalline nanowire arrays synthesized at high precursor concentration have wurtzite structures growing along the c-axis direction. Moreover, this work provides a simple method to fabricate novel pearl-chain structures which exhibit rare blue emission with by changing the concentration ratio of precursors. Furthermore, possible thermodynamic and kinetics mechanisms are discussed to rationalize the growth mechanism of the nanostructures. Besides, we use the Hall effect and magnetism measurements to analyze the varied nanostructures. According to the results, copper (I) ion concentrations in ZnO directly contribute to p-type electrical conduction. Copper (II) ion and induced intrinsic defect concentration in ZnO are related to room-temperature optical and dilute magnetic properties. Consequently, this work provides a simple method to fabricate Cu doped ZnO varied nanostructures, which have great potential for developing kinds of optoelectronic devices.

    總 目 錄 中文摘要…………………………………………………...……………......Ι 英文摘要……………………………………………………...…….…...…..Ⅱ 誌謝.. ………………....……………………………………………….…….Ⅲ 總目錄…………………………………………………………....………... Ⅳ 表目錄……………………………………………………………...….….... Ⅷ 圖目錄………………………………………………………………....…….Ⅸ 第一章 緒論 1-1 前言……………………………...…………1 1-2 研究目的與論文架構………………………………………………3 第二章 文獻回顧與理論基礎 2-1 氧化鋅晶體結構與物理特性…………………….…4 2-1.1 氧化鋅晶體結構……………………6 2-1.2 氧化鋅的能帶結構………………………7 2-1.3 理想氧化鋅晶體成長模型……………………9 2-1.4 氧化鋅之晶格震盪…………………………..……10 2-1.5 氧化鋅之發光性質…………………………13 2-1.6 氧化鋅之電性質…………………………..15 2-1.7 氧化鋅之磁性質…………………………..15 2-2 氧化鋅奈米材料的成長機制…………………….16 2-2.1 氣-液-固機制……………………………16 2-2.2 氣-固機制………………………………….17 2-2.3 溶液-液-固機制………………………………18 2-3 功能性氧化鋅之摻雜………………………..19 2-3.1 能隙工程....................19 2-3.2 p型氧化鋅之摻雜……………………...…20 2-3.3 經摻雜氧化鋅之光學特性…………………..22 2-3.4 稀磁性氧化鋅之摻雜……………………..23 2-4 摻銅氧化鋅之文獻回顧……………………………...26 2-4.1 摻銅氧化鋅之薄膜結構……………………..26 2-4.2 摻銅氧化鋅之奈米結構………………..31 2-5 研究動機……………………34 第三章 實驗方法與分析 3-1 化學氣相沉積製作摻銅氧化鋅奈米結構.....37 3-1.1 實驗流程..........................37 3-1.2 基板準備............................38 3-1.3 射頻濺鍍氧化鋅緩衝層........38 3-1.4 熱化學氣相沉積成長摻銅氧化鋅薄膜及奈米結構.........39 3-1.5 電極材料之蒸鍍............41 3-2 微結構、成分及表面分析.................42 3-2.1 掃描式電子顯微鏡.....................42 3-2.2 原子力顯微鏡.........................42 3-2.3 X光電子光譜儀.....................43 3-2.4 X光繞射光譜儀...............44 3-2.5 高解析穿透式電子顯微鏡........45 3-3 光學性質分析.......................................46 3-3.1 微觀拉曼光譜量測系統................46 3-3.2 陰極射線激發放光光譜.................46 3-3.3 光致螢光光激發光譜..................47 3-4 應用性質分析.................48 3-4.1 熱探針測量半導體電性..........48 3-4.2 霍爾量測系統.....................48 3-4.3 超導量子干涉磁量儀...........50 第四章 結果與討論 4-1 ZnO緩衝層與CZO薄膜之成長及其光、電、磁性質分析...........51 4-1.1 ZnO緩衝層輔助成長CZO薄膜....................52 4-1.2 CZO薄膜之表面成分及其鍵結態分析............55 4-1.3 CZO薄膜之X-ray繞射分析........59 4-1.4 CZO薄膜之成長機制..............60 4-1.5 CZO薄膜之螢光激光發光光譜分析........60 4-1.6 CZO薄膜稀磁性質之量測與分析..............61 4-1.7 CZO薄膜之電性質............63 4-1.8 結論.................64 4-2 ZnO與CZO奈米線(柱)陣列之成長及其光性及電性質分析...........65 4-2.1 ZnO與CZO奈米線(柱)陣列之成長...................65 4-2.2 ZnO奈米線(柱)陣列形貌及微結構分析..............66 4-2.3 CZO奈米線(柱)陣列形貌及微結構分析.....................69 4-2.4 CZO奈米線(柱)表面成分及其鍵結態分析..............75 4-2.5 CZO奈米線(柱)陣列之X-ray繞射分析.................79 4-2.6 CZO奈米線(柱)陣列之成長機制................80 4-2.7 CZO奈米線(柱)陣列之螢光發光光譜分析...81 4-2.8 CZO奈米線(柱)陣列之電性質........82 4-2.9 結論...............................................83 4-3探討CZO新穎結構之成長機制及其優異之光性、電性及磁性的探討...84 4-3.1 CZO奈米豆莢之成長.........................84 4-3.2 CZO奈米豆莢之形貌及成分分析......................85 4-3.3 CZO奈米豆莢之微結構分析............85 4-3.4 CZO奈米豆莢之表面成分及其鍵結態分析.................89 4-3.5 CZO奈米豆莢之成長機制.............91 4-3.6 CZO奈米豆莢結構之拉曼光譜分析.........................94 4-3.7 CZO奈米豆莢結構之陰極發光光譜及其特性分析.............95 4-3.8 CZO奈米豆莢結構之變溫螢光光譜分析...................97 4-3.9 CZO奈米豆莢結構稀磁性質之量測與分析...................99 4-3.10結論...............................101 第五章 總結.................................102 參考文獻...............................................103

    B. E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg and C. G. Granqvist, Phys. Rev. B 37, 10244 (1988).
    T. Mitate, Y. Sonoda and N. Kuwano, Phys. Stat. Sol. 192, 383 (2002).
    K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul and T. Sakurai, Sol. Energy 80, 715 (2006).
    S. J. Pearton, D. P. Norton, K. lp, Y. W. Heo and T. Steiner, J. Vac. Sci. Technol. B, 22, 932 (2004).
    S. Bloom and J. Ortenburger, J. Phys. Status Solidi B, 58, 561 (1973).
    Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    S. A. M. Lima, M. R. Davolos, C. Legnani, W. G. Quirino and M. Cremona, J. Alloy. Compd. 418, 35 (2005).
    R. A. P. O. Well, W. E. Spicer and J. C. McMenamin, Phys. Rev. B. 6, 3056 (1972).
    S. H. Jones, L. K. Seidel, K. M. Lau, M. Harold, J. Cryst. Growth 108, 73 (1991).
    R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64, 688 (1960).
    G. Dhanaraj, M. Dudley, D. Bliss, M. Callahan and M. Harris, J. Cryst. Growth. 297, 14 (2006).
    Schubert, M.,“Wurtzite-Structure Materials (Group-III Nitrides, ZnO) Infrared Ellipsometry on Semiconductor Layer Structure”s, 209, 9.109 (2005).
    Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, J. Appl. Phys. 88, 498 (2000).
    B. H. Bairamovm A. H., G. Irmer, V. V. Toporov and E. Ziegler, Phys. Status. Solidi. B. 119, 227 (1983).
    H. Harima, J. Phys.: Condens. Mat. 14, 967 (2002).
    R. Cuscó, E. Alarcón-Lladó, Jordi Ibáñez, L. Artús, J. Jiménez, B. Wang and M. J. Callahan. Phys. Rev. B 75, 165202 (2007).
    R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Appl. Phys. Lett. 87, 053103 (2005).
    C. X. Xu, X. W. Sun, X. H. Zhang, L. Ke, S. J. Chua, Nanotechnology, 15, 856 (2004).
    N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).
    A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen and S. Gwo, Appl. Phys. Lett. 88, 103107 (2006).
    B. Lin, Z. Fu and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).
    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
    B. X. Lin, Z. X. Fu and Y. B. Jia, Appl. Phys. Lett. 79, 934 (2001).
    K. Kimura and N. Satoh, Bull. Chem. Soc. Jpn. 62, 17558 (1989).
    G.D. Mahan, J. Appl. Phys. 54, 3825 (1983).
    H.K. Bowen, D. R. Uhlmann and W. D. Kingery, “Introduction to Ceramics”, John Wiley & Sons. Inc. 2nd (1988).
    P. X. Gao and Z. L. Wang, Appl phys. Lett. 84, 2883 (2002).
    R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
    M. Borgstrom, K. Deppert, L. Samuelson and W. Seifert, J. Cryst. Growth, 260, 18 (2004).
    F.C. Frank, Discuss. Farady Soc. 23, 48 (1949).
    R. V. Coleman and G. W .Sears, Acta Metal. Sin. 4, 268 (1956).
    R. Yang, Y. Ding and Z. L. Wang, Nano Lett. 4, 1309 (2004).
    T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, Science. 270, 1791 (1995).
    J. A. Van Vechten and T. K. Bergstresser, Phys. Rev. B 1, 3351 (1970).
    C. H. Park, S. B. Zhang and S.-H. Wei, Phys. Rev. B, 66, 073202 (2002).
    S. Limpijumnong, S. B. Zhang, S.-H. Wei and C. H. Park, Appl.Phys. Lett. 92, 155504 (2004).
    K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger and S. Niki, J. Cryst. Growth, 503, 237 (2002).
    J. K. Kim, J.-L. Lee, J. W. Lee, Y. J. Park and T. Kim, J. Vac. Sci. Technol. B, 17, 497 (1999).
    C. T. Lee, Y. H. Lin, L. W. Lai and L. R. Lou, IEEE PHOTONICS TECHNOLOGY LETTERS, 22, 1 (2010).
    K. K. Kim, H.S. Kim, D. K. Hwang and J.H. Lim, S. J. Park, Appl.Phys. Lett. 83, 63 (2003).
    Y. R. Ryu, T. S. Lee and H. W. White, Appl. Phys. Lett. 83, 87 (2003).
    A. Hartmann, M. K. Puchert and R. N. Lamb, Surf. Interface Anal. 24, 671 (1996).
    B. Xiang, P. Wang, X. Zhang, Shadi. A. Dayeh, David P. R. Aplin, C. Soci, D. Yu and D.Wang, Nano. Lett. 7, 323 (2007).
    T. Yamamoto, Thin Solid Films, 420, 100 (2002).
    E. Burstein, Phys. Rev. 93, 632 (1954).
    T. S. Moss, P. Lond. Math. Soc. 67, 775 (1954).
    R. A. Abram, G. J. Rees and B. L. H. Wilson, Adv. Phys. 27, 799 (1978).
    K. J. Kim and Y. R. Park, Appl. Phys. Lett. 78, 475 (2000).
    B. E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg and C. G. Granqvist, Phys. Rev. B 37, 10244 (1988).
    S. Methfessel and D.C. Mattis, Handbook of Phys. 18, 389 (1968).
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287, 1019 (2000).
    K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, 555 (2000).
    W. Prellier, A. Fouchet and B. Mercey, J. Phys.: Condens. Mat. 15, 1583 (2003).
    A. Tiwari, M. Snure, D. Kumar and J. T. Abiade, Appl. Phys. Lett. 92, 062509 (2008).
    T. Dietl, H. Ohno, F. Matsukura, Phys. Rev. B, 63, 195205 (2001).
    D. Wang, J. Zhou and G. Liu, J. Alloy. Compd. 487, 545 (2009).
    J. H. Jeon, S. Y. Jeong and C. R. Cho, J. Korean Phys. Soc. 54, 858 (2009).
    H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong and F. R. Zhu, Sensor. Actuat. B-Chem. 115, 247 (2006).
    K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jianng, C. L. Perkins, J. Turner and M. Al-Jassim, J. Appl. Phys. 102, 023517 (2007).
    T. Li, H. Fan, J. Yi, T. S. Herng, Y. Ma, X. Huang, J. Xue and J. Ding, J. Mater. Chem. 20, 5756 (2010).
    J. B. Kim, D. Bym, S.Y. Ie, D. H. Park, W. K. Choi, J. W. Choi and B. Angadi, Semicond. Sci. Technol. 23, 095004 (2008).
    R. Viswanatha, S. Chakrabory, S. Basu and Sarma, J. Phys. Chem. B. 110, 22310 (2006).
    K. G. Kanade, B. B. Kale, J. O. Baeg, S. M. Lee, C. W. Lee, S. J. Moon and H. Chang, Mater. Chem. Phys. 102, 98 (2007).
    P. K. Sharma, R. K. Dutta and A. C. Pandey, J. Magn. Magn. Mater. 321, 4001 (2009).
    H. Zhu, J. lqbal, H. Xu and D. Yu, J. Chem. Phys. 129, 124713 (2008).
    N. Kouklin, Adv. Mater. 20, 2190 (2008).
    Z. Zhang, J. B. Yi, J. Ding, L. M. Wong, H. L. Seng, S. J. Wang, J. G. Tao, G. P. Li, G. Z. Xing, T. C. Sum, C. H. A. Huan and T. Wu, J. Phys. Chem. C, 112, 9579 (2008).
    R. C. Wang and H. Y. Lin, J. Phys. Chem. C, 125, 263 (2011).
    丁南宏、方宏聲、鄭鴻斌等著,真空技術與應用,國科會精儀中心 (2001).
    郭正次, 激發光光譜分析. 材料分析p.238 (1998).
    楊鴻昌, 科儀新知 12, 72 (1991).
    G. Z. Xing, Jia Bao Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. Ping Li, S. J. Wang, J. Ding, T. C. Sum, C. H. A. Huan and T. Wu, Adv. Mater. 20, 3521 (2008).
    Y. X. Jin, Q. L. Cui, G. H. Wen, Q. S. Wang, J. Hao, S. Wang, and J. Zhang, J. Phys. D, Appl. Phys. 42, 215007 (2009).
    Y. M. Sun, Ph. D. thesis, University of Science and Technology of China, July, 2000.
    F.-Y. Ran, M. Subramanian, M. Tanemura, Y. Hayashi, T. Hihara, Physica B, 405, 3952 (2010).
    T. S. Herng, S. P. Lau, S. F. Yu and H. Y. Yang, Appl. Phys. Lett. 90, 032509 (2007).
    H. Zhu, J. Iqbal, H. Xu and D. Yu, J. Chem. Phys. 129, 124713 (2008).
    R. Dingle, Phys. Rev. Lett. 23, 579 (1969).
    R. Viswanatha, S. Chakraborty, S. Basu and D. D. Sarma, J. Phys. Chem. B, 110, 45 (2006).
    C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando and D. Golberg, Nano Lett. 8, 10 (2008).
    M. K. Puchert, P. Y. Timbrell and R. N. Lamb, J. Vac. Sci. Technol. A, 14, 4 (1996).
    E.I. Givargizov, J. Cryst. Growth, 20, 217 (1973).
    Y. Yan, L. Zhou, J. Zou and Ye.Zhang, Appl. Phys. A, 94, 559 (2009).
    Y. Zhang, Y.G. Yan and F. Zhu, Nanoscale Res. Lett. 2, 492 (2007).
    H. Kohno and S. Takeda, J. Cryst. Growth, 216, 185 (2000).
    E.I. Givargizov, J. Cryst. Growth, 31, 20 (1975).
    A. K. Pradhan, K. Zhang, G. B. Loutts, U. N. Roy, Y. Cui and A. Burger, J. Phys.: Condens. Matt. 16, 7123 (2004).
    F. J. Manjon, B. Mari, J. Serrano and A. H. Romero, J. Appl. Phys. 97, 054516 (2005).
    P. Blaha, K. Schwarz, P. Dufek and R. Augustyn, WIEN95, Technical University of Vienna 1995 (improved and updated Unix version of the original copyrighted WIEN-code; P. Blaha, K. Schwarz, P. Sorantin and S. B. Trickey, Comput. Phys. Commun., 1990, 59, 399).

    下載圖示 校內:2016-06-29公開
    校外:2016-06-29公開
    QR CODE