| 研究生: |
林欣穎 Lin, Hsin-Ying |
|---|---|
| 論文名稱: |
摻銅氧化鋅奈米結構之化學氣相成長及物性研究 Growth and Physical Properties of Cu doped ZnO Nanostructures by Chemical Vapor Deposition |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 共同指導教授: |
王瑞琪
Wang, Ruey-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 氧化鋅 、化學氣相成長 |
| 外文關鍵詞: | ZnO, CVD |
| 相關次數: | 點閱:87 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於此研究中,吾人為首度藉由氧化緩衝層的輔助下以熱化學氣相沉積成長具p-type電性及稀磁性質之摻銅氧化鋅薄膜、奈米陣列結構,以及新穎的奈米豆莢結構。藉由原子力顯微鏡、高解析穿透式電子顯微鏡的觀察與X-ray繞射分析,可知當前驅物濃度於較低及較高的情況下進行成長,將可成功合成出具原子級平坦度的p-type 摻銅氧化鋅薄膜及奈米線(柱)陣列結構,且此些結構沿c軸作優選成長,並具有非常好的結晶性質。此外,藉由前驅物濃度比例的調控,可開發出新穎的奈米豆莢結構,並具有罕見的藍光特性,文中我們亦對其成長機制作可能性的機制探討。另外,吾人亦藉由霍爾效應及磁性的量測解析多樣的摻銅氧化鋅奈米結構,由其結果可知一價銅(Cu+)的摻雜濃度對於形成p-type電性有直接的影響,而二價銅(Cu2+)的摻雜濃度及銅摻雜所誘發的缺陷濃度對於室溫光性及稀鐵磁性質有很大的影響。有鑒於此,若我們能將此富功能性的氧化鋅奈米材料應用於各式光電奈米元件,則可大幅提升元件的應用效能。
In this research, we demonstrate the fabrication of Cu doped ZnO films, nanowire arrays and novel pearl-chain nanostructures with p-type conduction and dilute magnetic properties by chemical vapor deposition (CVD) for the first time. Atomic force microscopy, high-resolution transmission electron microscopy and X-ray diffraction patterns show that the p-type Cu:ZnO films synthesized at low precursor concentration have atomic-scale flat surface and single-crystalline nanowire arrays synthesized at high precursor concentration have wurtzite structures growing along the c-axis direction. Moreover, this work provides a simple method to fabricate novel pearl-chain structures which exhibit rare blue emission with by changing the concentration ratio of precursors. Furthermore, possible thermodynamic and kinetics mechanisms are discussed to rationalize the growth mechanism of the nanostructures. Besides, we use the Hall effect and magnetism measurements to analyze the varied nanostructures. According to the results, copper (I) ion concentrations in ZnO directly contribute to p-type electrical conduction. Copper (II) ion and induced intrinsic defect concentration in ZnO are related to room-temperature optical and dilute magnetic properties. Consequently, this work provides a simple method to fabricate Cu doped ZnO varied nanostructures, which have great potential for developing kinds of optoelectronic devices.
B. E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg and C. G. Granqvist, Phys. Rev. B 37, 10244 (1988).
T. Mitate, Y. Sonoda and N. Kuwano, Phys. Stat. Sol. 192, 383 (2002).
K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul and T. Sakurai, Sol. Energy 80, 715 (2006).
S. J. Pearton, D. P. Norton, K. lp, Y. W. Heo and T. Steiner, J. Vac. Sci. Technol. B, 22, 932 (2004).
S. Bloom and J. Ortenburger, J. Phys. Status Solidi B, 58, 561 (1973).
Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys. 84, 3912 (1998).
S. A. M. Lima, M. R. Davolos, C. Legnani, W. G. Quirino and M. Cremona, J. Alloy. Compd. 418, 35 (2005).
R. A. P. O. Well, W. E. Spicer and J. C. McMenamin, Phys. Rev. B. 6, 3056 (1972).
S. H. Jones, L. K. Seidel, K. M. Lau, M. Harold, J. Cryst. Growth 108, 73 (1991).
R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64, 688 (1960).
G. Dhanaraj, M. Dudley, D. Bliss, M. Callahan and M. Harris, J. Cryst. Growth. 297, 14 (2006).
Schubert, M.,“Wurtzite-Structure Materials (Group-III Nitrides, ZnO) Infrared Ellipsometry on Semiconductor Layer Structure”s, 209, 9.109 (2005).
Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, J. Appl. Phys. 88, 498 (2000).
B. H. Bairamovm A. H., G. Irmer, V. V. Toporov and E. Ziegler, Phys. Status. Solidi. B. 119, 227 (1983).
H. Harima, J. Phys.: Condens. Mat. 14, 967 (2002).
R. Cuscó, E. Alarcón-Lladó, Jordi Ibáñez, L. Artús, J. Jiménez, B. Wang and M. J. Callahan. Phys. Rev. B 75, 165202 (2007).
R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Appl. Phys. Lett. 87, 053103 (2005).
C. X. Xu, X. W. Sun, X. H. Zhang, L. Ke, S. J. Chua, Nanotechnology, 15, 856 (2004).
N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).
A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen and S. Gwo, Appl. Phys. Lett. 88, 103107 (2006).
B. Lin, Z. Fu and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).
K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
B. X. Lin, Z. X. Fu and Y. B. Jia, Appl. Phys. Lett. 79, 934 (2001).
K. Kimura and N. Satoh, Bull. Chem. Soc. Jpn. 62, 17558 (1989).
G.D. Mahan, J. Appl. Phys. 54, 3825 (1983).
H.K. Bowen, D. R. Uhlmann and W. D. Kingery, “Introduction to Ceramics”, John Wiley & Sons. Inc. 2nd (1988).
P. X. Gao and Z. L. Wang, Appl phys. Lett. 84, 2883 (2002).
R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
M. Borgstrom, K. Deppert, L. Samuelson and W. Seifert, J. Cryst. Growth, 260, 18 (2004).
F.C. Frank, Discuss. Farady Soc. 23, 48 (1949).
R. V. Coleman and G. W .Sears, Acta Metal. Sin. 4, 268 (1956).
R. Yang, Y. Ding and Z. L. Wang, Nano Lett. 4, 1309 (2004).
T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, Science. 270, 1791 (1995).
J. A. Van Vechten and T. K. Bergstresser, Phys. Rev. B 1, 3351 (1970).
C. H. Park, S. B. Zhang and S.-H. Wei, Phys. Rev. B, 66, 073202 (2002).
S. Limpijumnong, S. B. Zhang, S.-H. Wei and C. H. Park, Appl.Phys. Lett. 92, 155504 (2004).
K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger and S. Niki, J. Cryst. Growth, 503, 237 (2002).
J. K. Kim, J.-L. Lee, J. W. Lee, Y. J. Park and T. Kim, J. Vac. Sci. Technol. B, 17, 497 (1999).
C. T. Lee, Y. H. Lin, L. W. Lai and L. R. Lou, IEEE PHOTONICS TECHNOLOGY LETTERS, 22, 1 (2010).
K. K. Kim, H.S. Kim, D. K. Hwang and J.H. Lim, S. J. Park, Appl.Phys. Lett. 83, 63 (2003).
Y. R. Ryu, T. S. Lee and H. W. White, Appl. Phys. Lett. 83, 87 (2003).
A. Hartmann, M. K. Puchert and R. N. Lamb, Surf. Interface Anal. 24, 671 (1996).
B. Xiang, P. Wang, X. Zhang, Shadi. A. Dayeh, David P. R. Aplin, C. Soci, D. Yu and D.Wang, Nano. Lett. 7, 323 (2007).
T. Yamamoto, Thin Solid Films, 420, 100 (2002).
E. Burstein, Phys. Rev. 93, 632 (1954).
T. S. Moss, P. Lond. Math. Soc. 67, 775 (1954).
R. A. Abram, G. J. Rees and B. L. H. Wilson, Adv. Phys. 27, 799 (1978).
K. J. Kim and Y. R. Park, Appl. Phys. Lett. 78, 475 (2000).
B. E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg and C. G. Granqvist, Phys. Rev. B 37, 10244 (1988).
S. Methfessel and D.C. Mattis, Handbook of Phys. 18, 389 (1968).
T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287, 1019 (2000).
K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, 555 (2000).
W. Prellier, A. Fouchet and B. Mercey, J. Phys.: Condens. Mat. 15, 1583 (2003).
A. Tiwari, M. Snure, D. Kumar and J. T. Abiade, Appl. Phys. Lett. 92, 062509 (2008).
T. Dietl, H. Ohno, F. Matsukura, Phys. Rev. B, 63, 195205 (2001).
D. Wang, J. Zhou and G. Liu, J. Alloy. Compd. 487, 545 (2009).
J. H. Jeon, S. Y. Jeong and C. R. Cho, J. Korean Phys. Soc. 54, 858 (2009).
H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong and F. R. Zhu, Sensor. Actuat. B-Chem. 115, 247 (2006).
K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jianng, C. L. Perkins, J. Turner and M. Al-Jassim, J. Appl. Phys. 102, 023517 (2007).
T. Li, H. Fan, J. Yi, T. S. Herng, Y. Ma, X. Huang, J. Xue and J. Ding, J. Mater. Chem. 20, 5756 (2010).
J. B. Kim, D. Bym, S.Y. Ie, D. H. Park, W. K. Choi, J. W. Choi and B. Angadi, Semicond. Sci. Technol. 23, 095004 (2008).
R. Viswanatha, S. Chakrabory, S. Basu and Sarma, J. Phys. Chem. B. 110, 22310 (2006).
K. G. Kanade, B. B. Kale, J. O. Baeg, S. M. Lee, C. W. Lee, S. J. Moon and H. Chang, Mater. Chem. Phys. 102, 98 (2007).
P. K. Sharma, R. K. Dutta and A. C. Pandey, J. Magn. Magn. Mater. 321, 4001 (2009).
H. Zhu, J. lqbal, H. Xu and D. Yu, J. Chem. Phys. 129, 124713 (2008).
N. Kouklin, Adv. Mater. 20, 2190 (2008).
Z. Zhang, J. B. Yi, J. Ding, L. M. Wong, H. L. Seng, S. J. Wang, J. G. Tao, G. P. Li, G. Z. Xing, T. C. Sum, C. H. A. Huan and T. Wu, J. Phys. Chem. C, 112, 9579 (2008).
R. C. Wang and H. Y. Lin, J. Phys. Chem. C, 125, 263 (2011).
丁南宏、方宏聲、鄭鴻斌等著,真空技術與應用,國科會精儀中心 (2001).
郭正次, 激發光光譜分析. 材料分析p.238 (1998).
楊鴻昌, 科儀新知 12, 72 (1991).
G. Z. Xing, Jia Bao Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. Ping Li, S. J. Wang, J. Ding, T. C. Sum, C. H. A. Huan and T. Wu, Adv. Mater. 20, 3521 (2008).
Y. X. Jin, Q. L. Cui, G. H. Wen, Q. S. Wang, J. Hao, S. Wang, and J. Zhang, J. Phys. D, Appl. Phys. 42, 215007 (2009).
Y. M. Sun, Ph. D. thesis, University of Science and Technology of China, July, 2000.
F.-Y. Ran, M. Subramanian, M. Tanemura, Y. Hayashi, T. Hihara, Physica B, 405, 3952 (2010).
T. S. Herng, S. P. Lau, S. F. Yu and H. Y. Yang, Appl. Phys. Lett. 90, 032509 (2007).
H. Zhu, J. Iqbal, H. Xu and D. Yu, J. Chem. Phys. 129, 124713 (2008).
R. Dingle, Phys. Rev. Lett. 23, 579 (1969).
R. Viswanatha, S. Chakraborty, S. Basu and D. D. Sarma, J. Phys. Chem. B, 110, 45 (2006).
C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando and D. Golberg, Nano Lett. 8, 10 (2008).
M. K. Puchert, P. Y. Timbrell and R. N. Lamb, J. Vac. Sci. Technol. A, 14, 4 (1996).
E.I. Givargizov, J. Cryst. Growth, 20, 217 (1973).
Y. Yan, L. Zhou, J. Zou and Ye.Zhang, Appl. Phys. A, 94, 559 (2009).
Y. Zhang, Y.G. Yan and F. Zhu, Nanoscale Res. Lett. 2, 492 (2007).
H. Kohno and S. Takeda, J. Cryst. Growth, 216, 185 (2000).
E.I. Givargizov, J. Cryst. Growth, 31, 20 (1975).
A. K. Pradhan, K. Zhang, G. B. Loutts, U. N. Roy, Y. Cui and A. Burger, J. Phys.: Condens. Matt. 16, 7123 (2004).
F. J. Manjon, B. Mari, J. Serrano and A. H. Romero, J. Appl. Phys. 97, 054516 (2005).
P. Blaha, K. Schwarz, P. Dufek and R. Augustyn, WIEN95, Technical University of Vienna 1995 (improved and updated Unix version of the original copyrighted WIEN-code; P. Blaha, K. Schwarz, P. Sorantin and S. B. Trickey, Comput. Phys. Commun., 1990, 59, 399).