簡易檢索 / 詳目顯示

研究生: 陳育翰
Chen, Yu-Han
論文名稱: 以快速凝固霧化法製作Mg-Ni-Gd金屬玻璃粉末及其吸氫之探討
Study of Employing Rapid-Solidifying Atomization to Make Mg-Ni-Gd Metallic Glass Powders and Their Hydrogen Absorption Behavior
指導教授: 曹紀元
Tsao, Chi-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 164
中文關鍵詞: 氣體霧化法鎂基金屬玻璃粉末非晶質儲氫金屬氫化物
外文關鍵詞: Gas-atomization, Mg-based, Metallic glass powders, amorphous, hydrogen storage, metallic hydrides
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究使用氣體霧化法製程製備Mg-Ni-Gd玻璃金屬粉末。製備出的金屬玻璃粉末粒徑主要約在70~90μm。於X光繞射分析(XRD)、熱差式掃描分析(DSC)及穿隧式電子顯微鏡(TEM)的檢視下都呈現非晶質特性,證明本實驗室氣體霧化製程設備可以穩定製備較低玻璃形成能力(GFA)的金屬玻璃粉末;於熱差式掃描分析(DSC)檢測材料的玻璃轉換溫度及結晶溫度,並以熱處理的方式製作各特性溫度所產生的相,並以XRD分析之;並以耦合電漿質譜儀(ICP)分析其成分,其組成為Mg78Ni13Gd9。
    以開發金屬玻璃儲氫粉末為前提,將所製作出的粉末進行儲氫測試,探討氫氣氣氛下的金屬玻璃粉末所形成的原子結構改變及金屬玻璃粉末的熱穩定性影響,且探討金屬玻璃粉末儲氫後氫化物的形貌;而後改變於氫氣下的加熱過程,探討以上各項。歸納Mg78Ni13Gd9金屬玻璃粉末儲氫特性及其機制。

    The Mg-Ni-Gd metallic glass powders were manufactured by the gas-atomization. The main powders size were measured as 70~90μm. Under the examinations as X-Ray Diffraction (XRD), Differential Scanning Calorimeter (DSC) and Transmission Electronic Microscope (TEM) powders show up as amorphous. The gas-atomization process in our lab can manufacture low glass-forming ability amorphous powders stably. The powders’ glass-transition temperature and crystal temperature was synthesized by DSC, which phases under characteristic temperature was made by heat treatment and analyzed by XRD. Powders’ compositions are Mg78Ni13Gd9 verified by Inductively Coupled Plasma Mass Spectrometry (ICP).
    As the aim of developing hydrogen storage metallic glass powders, powders were put on hydrogen storage process. The metallic glass powders atomic structure and thermal-stability under hydrogen atmosphere are discussed, hydrides formed after hydrogen storage are analyzed their morphology and phases. With the changes of heating process under hydrogen storage experiment, those phenomena mentioned before are also discussed and compared. Those conclusions will be summarized to figure out the hydrogen storage properties and mechanism of Mg78Ni13Gd9 metallic glass powders.

    摘要 I Abstract II 致謝 III 表格目錄 IX 圖片目錄 X 第一章 前言 1 1.1 氫能源 1 1.2 氫氣的儲存 1 1.2.1 高壓氣態儲氫 1 1.2.2 低溫液態儲氫 2 1.2.3 金屬氫化物儲氫 2 1.2.4 碳材中的低溫吸附儲氫 3 1.2.5 化學儲氫 3 1.3 鎂合金儲氫現況 3 1.3.1 以鎂基金屬作為儲氫媒介 3 1.3.2 氫化鎂實際應用的限制 4 1.3.3 減少儲氫反應能的使用方式 5 1.4 非晶質儲氫 7 第二章 理論基礎及文獻回顧 8 2.1 以氣體霧化法製作金屬玻璃粉末[18-20] 8 2.1.1 本技術之優點 8 2.1.2 製程特色 8 2.1.3 參數及其所造成的影響[21, 22] 9 2.2 非晶的形成 9 2.3 熱分析理論 11 2.3.1 非恆溫熱分析 11 2.3.2 恆溫熱分析 12 2.4 儲氫合金 13 2.4.1 化學熱力學 13 2.4.2 氫在金屬中的特性: 15 2.4.3 金屬氫化物 16 2.4.4 複合式氫化物 16 2.5 含奈米晶儲氫合金 17 2.6 金屬玻璃儲氫合金 18 2.6.1 氫原子於結構中的分布 18 2.6.2 氫氣的溶解度 19 2.6.3 氫的擴散 20 2.6.4 氫氣中的熱穩定性 20 2.7 研究目的 21 第三章 研究架構與實驗方法 22 3.1 實驗架構及流程圖 22 3.2 實驗設備與其儀器 23 3.3 實驗材料準備 24 3.4 氣體霧化製程準備 25 3.5 X射線繞射儀(XRD)相分析 25 3.6 感應耦合電漿質譜儀(ICP)成分鑑定 25 3.7 穿透式電子顯微鏡(TEM)相分析 26 3.8 熱差分析儀(DSC)熱相分析 27 3.8.1 恆溫熱差分析 27 3.8.2 非恆溫熱差分析 27 3.9 金相試片: 27 3.10 數據分析軟體 28 3.10.1 熱處理 28 3.11 儲氫能力與成果分析 29 第四章 結果及討論 30 4.1 以RSA製備Mg78Ni13Gd9粉末性質及特性 30 4.1.1 以RSA製備Mg78Ni13Gd9之外觀 30 4.1.2 粉末金相觀察及ICP/EDX成分分析 30 4.1.3 X-ray diffraction分析(XRD) 31 4.1.4 DSC熱分析 31 4.1.5 TEM分析 32 4.1.6 粉末熱處理分析 32 4.1.6.1 X-ray diffraction分析(XRD) 32 4.1.6.2 粉末金相觀察 33 4.2 粉末析氫測試及相關實驗 33 4.2.1 PCI測試 33 4.2.1.1 恆溫儲氫 33 4.2.1.2 兩段恆溫儲氫 34 4.2.1.3 熱處理後儲氫 35 4.2.2 X-ray diffraction分析(XRD) 36 4.2.2.1 恆溫儲氫 36 4.2.2.2 兩段恆溫儲氫 36 4.2.2.3 熱處理後儲氫 37 4.2.3 粉末金相觀察 37 4.2.3.1 恆溫儲氫 37 4.2.3.2 兩段恆溫儲氫 38 4.2.3.3 熱處理後儲氫 39 4.2.4 TEM分析 39 4.2.4.1 恆溫儲氫 39 4.2.4.2 兩段恆溫儲氫 41 4.2.5 儲氫後DSC分析及DSC後粉末金相分析 42 4.2.5.1 恆溫儲氫 43 4.2.5.2 兩段恆溫儲氫 43 4.2.6 小結 43 4.2.6.1 恆溫儲氫 43 4.2.6.2 兩段恆溫儲氫 44 4.2.6.3 熱處理後儲氫 46 第五章 結論 47 第六章 未來展望 49 參考文獻 50

    1. Schlapbach L, Z.A., Hydrogen-storage materials formobile applications. Nature, 2001. 414: p. 5.
    2. Selvam P, V.B., Swamy CS, Srinivasan V, Magnesium & magnesium alloy hydride. Int J Hydrogen Energy, 1986. 11.
    3. Y, F., The metal–hydrogen system, basic bulk properties. Springer series in materials science, 1993.
    4. Mushnikov NV, E.A., Uimin MA, Gaviko VS,Terent'ev PB, Skripov AV, et al, Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen. Phys Met Metall, 2006. 102(4).
    5. Zaluska A, Z.L., Strom-Olsen JO, Nanocrystalline magnesium for hydrogen storage. J Alloys Compd, 1999. 288.
    6. Schlapbach L, S.D., Oelhafen P., Catalytic effect in the hydrogenation of Mg and Mg compounds: surface analysis of Mg–Mg2Ni and Mg2Ni. Mater Res Bull, 1979. 14.
    7. Vigeholm B, K.J., Larsen B, Pedersen AS, Formation and decomposition of magnesium hydride. J Less-Common Met, 1983. 89: p. 135–44.
    8. Berlouis LEA, C.E., Hall-Barientos E, Hall PJ, Dodd SB,Morris S, et al, Thermal analysis investigation of hydriding properties of nanocrystalline Mg–Ni– and Mg–Fe–based alloys prepared by high-energy ball milling. J Mater Res, 2001(16).
    9. Huot J, A.E., Takasa T, Mechanical alloying of Mg–Ni compounds under hydrogen and inert atmosphere. J Alloys Compd, 1995. 231.
    10. Reilly JJ, W.R., Reaction hydrogen with alloys magnesium and nickel and formation of Mg2NiH4. Inorg Chem, 1968(7).
    11. Dornheim M, D.S., Barkhordarian G, Boesenberg U,Klassen T, Gutfleisch O, et al, Hydrogen storage in magnesium-based hydrides and hydride composites. Scr Mater Res Bull, 2007. 56.
    12. Jain IP, V.Y., Malhotra LK, Uppadhyay KS, Hydrogen storage in thin film metal hydride-a review. Int J Hydrogen Energy, 1988. 13.
    13. Huang, L.J., G.Y. Liang, and Z.B. Sun, Hydrogen-storage properties of amorphous Mg–Ni–Nd alloys. Journal of Alloys and Compounds, 2006. 421(1-2): p. 279-282.
    14. Semenenko KN, V.V., Kuliev SI, Gasan-Zade AA, Kurbanov TKh, Hydrogenation of magnesium alloys. Zh Neorg Khim, 1984. 29(9).
    15. Hui-ping Ren, Y.-h.Z., Bao-wei Li, Dongliang Zhao, Shi-hai Guo, Xin-lin Wang, Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg20 xLaxNi10 (x = 0–6) alloys. Int J Hydrogen Energy, 2009. 34.
    16. Kuliev SI, K.S., Verbetskii VN, Gasan-Zade AA,Semenenko KN, Verbetskii VN, Kuliev SI, Gasan-Zade AA, Kurbanov TKh, Interaction between hydrogen and magnesium-misch metal-nickel, metally Akad. Nauk SSSR, 1988. vol. 1.
    17. Lass, E.A., Hydrogen storage measurements in novel Mg-based nanostructured alloys produced via rapid solidification and devitrification. International Journal of Hydrogen Energy, 2011. 36(17): p. 10787-10796.
    18. 許鎮安, Study of the Processing and Mechanical Properties of the Mg-Cu-Gd Bulk Metallic Glass Synthesized by Rapid-Solidifying Atomization and consolidated by Powder Metallurgy. 國立成功大學材料科學及工程學系碩士論文, 2011.
    19. Jin-Ho Kim, H.L., Kwang-Taek Hwang, Jeong-Seb Han, Hydriding behavior in Zr-based AB2 alloy by gas atomization process. 2009. 34(23).
    20. Yoshihito Kawamura, H.M., Akihisa Inouea, Synthesis of ZrC/Zr55Al10Ni5Cu30 metallic-glass matrix composite powders by high pressure gas atomization. Scripta Materialia, 2000. 73(12).
    21. Sastry, S.H.a.S.M.L., Processing Maps for Optimizing Gas Atomization and Spray Deposition. JOM, 1995.
    22. Y. M. CHEN, Y.H.S., R. W. LIN and C.-Y. A. TSAO, Modeling of atomization rate during gas atomization. Acta Materialia, 1998. 46(3): p. 14.
    23. Spaepen, L.C.C.a.F., How to use calorimetry to distinguish a microcrystalline structure from an amorphous structure. Materials Science and Engineering: A, 1991. 133.
    24. He, Y., et al., On the structural nature of aluminium-based metallic glasses. Philosophical Magazine Letters, 1990. 61(5): p. 297-303.
    25. Akihisa Inoue, K.O.a.T.M., New Amorphous Al-Y, Al-La and Al-Ce Alloys Prepared by Melt Spinning. Jpn. J. Appl. Phys., 1988. 27.
    26. Akihisa Inoue, K.O., An-Pang Tsai and Tsuyoshi Masumoto, Aluminum-Based Amorphous Alloys with Tensile Strength above 980 MPa (100 kg/mm2). Jpn. J. Appl. Phys., 1988. 27.
    27. Kazumasa Matusita, S.S., Kineticstudy of crystallization of glass by differentialthermalanalysis—criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 1980. 38-39: p. 6.
    28. K. Matusita, S.S.a.Y.M., Determination of the activation energy for crystal growth by differential thermal analysis. JOURNAL OF MATERIALS SCIENCE, 1975. 10(6): p. 7.
    29. Kissinger, H.E., Reaction Kinetics in Differential Thermal Analysis. Anal. Chem., 1957. 29(11): p. 5.
    30. J.W., C., The theory of transformations in metals and alloys (part I + II). New York:Pergamon Press, 2002.
    31. Schlapbach L, S.D., Oelhafen P., Surface properties and activation. In: Schlapbach L (ed) Hydrogen in intermetallic compounds II. (Topics in applied physics 67) Springer, Berlin Heidelberg New York,, 1992: p. 91.
    32. Zuttel, A., Hydrogen storage methods. Naturwissenschaften, 2004. 91(4): p. 157-72.
    33. Wiswall, R., HYDROGEN IN METALS II. Topics in Applied Physics,, 1978. 29.
    34. Philpott, J.E., Hydrogen diffusion technology. Platinum Met. Rev., 1985. 29: p. 12.
    35. Cole, M.J., The generator of pure hydrogen for industrial applications. Platinum Met. Rev., 1981. 25: p. 12–13.
    36. Itoh, N., A membrane reactor using palladium. AIChEJ., 1987. 33: p. p. 1576.
    37. Sandrock, G., A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds, 1999. 293-295.
    38. Marzia Pentimallia, F.P., Luciano Pillonia, Enrico Imperib, Pietro Matricardic, AB5/ABS composite material for hydrogen storage. International Journal of Hydrogen Energy, 2009. 34(10).
    39. Tatiana I. Bratanich, V.V.S., Oleg V. Kucheriavyi, Lyudmila I. Kopylova, Nikolay A. Krapivka, Phase transformations in Ti2Cu during destructive hydrogenation. International Journal of Hydrogen Energy, 2011. 36(1).
    40. Kim, J.-H., et al., Hydriding behavior in Zr-based AB2 alloy by gas atomization process. International Journal of Hydrogen Energy, 2009. 34(23): p. 9424-9430.
    41. Zhang, Y.-h., et al., Improved hydrogen storage behaviours of nanocrystalline and amorphous Mg2Ni-type alloy by Mn substitution for Ni. International Journal of Hydrogen Energy, 2010. 35(21): p. 11966-11974.
    42. Liu, B.-H., Hydrogen-Metal Systems:Hydride Forming Alloys(Preperties and Characteristics, Database Information). Encyclopedia of Materials: Science and Technology, 2001.
    43. R. Kirchheim, F.S., G. Schluckebier, Hydrogen in amorphous metals—I. Acta Metallurgica, 1982. 30(6): p. 10.
    44. Kirchheim, R., Solubility, diffusivity and trapping of hydrogen in dilute alloys. Deformed and amorphous metals—II. Acta Metallurgica, 1982. 30(6): p. 10.
    45. A.J Maeland, L.E.T., G.G Libowitz, Hydrides of metallic glass alloys. Journal of the Less Common Metals, 1980. 74(2): p. 7.
    46. R. Kirchheim, U.S., Modelling tracer diffusion and mobility of interstitials in disordered materials. 70, 1985. 3: p. 19.
    47. L. NOV ´AK, E.K.-K.O.a.P.D., in Proceedings of the 9th International Conference on Rapidly Quenched and Metastable Alloys, Bratislava, March 1996, edited by P. Duhaj,P. Mrafko, P. Svec, Elsevier, Amsterdam, 1997: p. 216.
    48. Pan, D.G., et al., Mg–Cu–Ag–Gd–Ni bulk metallic glass with high mechanical strength. Journal of Alloys and Compounds, 2007. 438(1-2): p. 142-144.
    49. Peng, H., et al., Mg–Ni–Gd–Ag bulk metallic glass with improved glass-forming ability and mechanical properties. Intermetallics, 2011. 19(7): p. 829-832.
    50. Sakka, K.M.a.S., Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 1980: p. 6.
    51. ELIEZER, N.E.A.D., An Overview of Hydrogen Interaction with Amorphous Alloys. Advanced Performance Materials, 1999. 6: p. 27.

    無法下載圖示 校內:2017-09-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE