| 研究生: |
盧芷綺 Lu, Jhih-Ci |
|---|---|
| 論文名稱: |
小球藻異營培養生產蛋白質 Heterotrophic Cultivation of Chlorella sp. SU-9 for Protein Production |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 小球藻 、蛋白質 、異營培養 、氮源 、葡萄糖 、糖蜜 、鐵 、饋料批次 、半批次 、發酵槽 |
| 外文關鍵詞: | Chlorella sorokiniana, protein, heterotrophic cultivation, nitrogen, glucose, molasses, iron, fed-batch, semi-batch, fermentor |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
魚類膳食佔集約化水產養殖經營成本的50%以上,故飼料成本佔通常水產養殖總成本的一半以上。而食肉動物和雜食動物魚類的水產飼料所需原料中,魚粉佔市場大宗,故魚粉是水產養殖飼料的主要動物蛋白來源。然而,由於魚粉的供應不穩定以及自然資源的減少,魚粉的價格已急劇上漲。因此,迫切需要尋找替代動物蛋白的來源來替代或減少水產飼料中魚粉的使用。微藻包含具有必需氨基酸的完整蛋白質譜,其成分的組成類似於魚粉,且微藻具有極高的蛋白質產率,使其成為魚粉的理想替代品。本研究發現小球藻Chlorella sorokiniana SU-9可有效地在異養條件下於無光照的情況下利用有機碳源生長,且其蛋白質含量高,使得在異養條件下培養C. sorokiniana SU-9進行蛋白質生產具有高度潛力。此外,本研究也比較在各種條件下胺基酸含量的差異,並通過胺基酸組成分析探討異養微藻的營養價值。
本研究第一部分是建立微藻蛋白質異營生產的最適化培養條件。使用不同類型的碳源,氮源,碳濃度,氮濃度,pH值和鐵離子濃度來培養C. sorokiniana SU-9。所獲得的最佳參數如下:碳源濃度為葡萄糖10 g/L;氮源濃度為硝酸鈉1.5 g/L;不控制pH值;鐵離子濃度為46 μM。在上述最佳條件下,C. sorokiniana SU-9的生物量濃度,蛋白質含量和蛋白質產率分別達到4.14 g/L,403 mg/g和382 mg/L/d。
第二部分是降低培養成本,以糖蜜代替葡萄糖。由於糖蜜可以提供所需的養分(例如蔗糖,葡萄糖,果糖和氮,維生素和無機鹽)來支持微生物的生長,因此它是微藻生長的合適的低成本碳源和養分來源。因此,在這此研究中,廢糖蜜被用於異養微藻的培養。結果顯示,使用廢糖蜜作為有機碳源,C. sorokiniana SU-9可以在異養條件下高效率生長。此外,由於糖蜜含有其他營養成分,因此可以減少培養基營養成分的添加。在50% BG-11和1.5 g/L硝酸鈉中添加10 g/L水解糖蜜(相當於7.5 g/L還原糖)可獲得最佳條件。 C. sorokiniana SU-9的生物量濃度,蛋白質含量和蛋白質產率分別達到2.11 g/L(生物質濃度), 488.3 mg/g和201.3 mg/L/d。
最後,在最佳條件下,採用饋料批次、半批次的工程策略,對C. sorokiniana SU-9進行栽培,以提高蛋白質的產量。在饋料批次系統中,獲得了更高的生物量濃度(10.12 g/L)和較差的蛋白質產率(197.18 mg/L/d)。而在半批次系統中,當置換率為75%時,有優異的生物量生產速率(1300 mg/L/d),蛋白質生產速率(450 mg/L/d)和更高的總蛋白質產量(5118.1 mg)。最後,使用半批策略的異養培養規模擴大到5 L攪拌發酵罐,其中生物質和蛋白質的生產速率分別為2200 mg/L/d和550 mg/L/d。最後,使用替代糖蜜可以有效地將每單位蛋白質的碳源成本降低約88.6%。另外,發現微藻與魚粉和大豆相比,蛋白質中包含更高的精氨酸,賴氨酸和半胱氨酸含量,這顯示出C. sorokiniana SU-9作為飼料的優勢。
Fish meal is the primary animal protein source for aquaculture feed. However, the price of fish meal has dramatically increased due to its unstable supply and the decline in its nature resources. Thus, finding alternative sources for animal proteins to replace or reduce the use of fish meal in aqua-feeds is of urgent demand. Microalgae are rich in proteins with a complete profile of essential amino acids. The composition of microalgal protein is similar to that of fish meal, making it an ideal replacement for fish meal. Microalgae appear to be a promising source of protein due to their high protein productivity. In particular, the microalga Chlorella sorokiniana SU-9 screened in this study can effectively use organic carbon sources under heterotrophic conditions without illumination, and has a high protein content. Protein production under heterotrophic conditions is more practicable for efficient mass production of proteins in industrial processes. In this study, the production of heterotrophic proteins of C. sorokiniana SU-9 strain was examined. In addition, the differences of amino acid profiles under various conditions were compared, and the nutritional value of heterotrophic microalgae was discussed through the analysis of amino acid profiles.
The first part of this study was to establish the cultivation conditions for protein production. Different types of carbon source, nitrogen source, carbon concentration, nitrogen concentration, pH value and iron ion concentration were evaluated for the cultivation of C. sorokiniana SU-9. The defined parameters for optimal protein production under heterotrophic cultivation of SU-9 are as follows: carbon source - glucose concentration of 10 g/L, nitrogen source - sodium nitrate concentration of 1.5 g/L, pH value not controlled and iron concentration of 46 μM. Under the above optimal conditions, the biomass concentration, protein content and protein productivity of C. sorokiniana SU-9 reached 4.14±0.20 g/L, 403±33 mg/g and 382±36 mg/ L/d, respectively.
In order to reduce the microalgae cultivation cost, glucose was replaced with molasses as a carbon source in the heterotrophic cultivation. As molasses wastewater can provide the required nutrients (such as sucrose, glucose, fructose, and nitrogen, vitamins and inorganic salts) to support the growth of microalgae, it is a suitable low-cost source of carbon and nutrients. Therefore, in this study, waste molasses was used for the cultivation of heterotrophic microalgae. The results show that using waste molasses as an organic carbon source, C. sorokiniana SU-9 can grow efficiently under heterotrophic conditions. Since molasses contains additional nutrients, the nutrients present in the medium for cultivation can be reduced. The results indicated that 50% BG-11, 1.5 g/L sodium nitrate, 10 g/L hydrolyzed molasses (equivalent to 7.5 g/L reducing sugar) can achieve the best protein production. The biomass concentration, protein content and protein productivity of C. sorokiniana SU-9 reached 2.11±0.31 g/L, 488±19 mg/g and 201±25 mg/L/d, respectively.
After arriving at the optimal conditions for protein production using SU-9, engineering strategies such as fed-batch and semi-batch operation were applied for the improvement of protein production. In the fed-batch system, higher biomass concentration (10.12 g/L) and poor protein productivity (211 mg/L/d) were obtained. In the semi-batch system, with a replacement rate of 75%, excellent biomass productivity (1300 mg/L/d), protein productivity (450 mg/L/d) and higher total protein accumulation of 5118.1 mg were achieved. Finally, heterotrophic culture using a semi-batch strategy was scaled up to a 5 L stirred tank fermentor, in which biomass productivity and protein productivity of 2200 mg/L/d and 550 mg/L/d, respectively were achieved. Cost analysis revealed that the use of molasses as an alternative carbon and nutrient source can effectively reduce the carbon source cost per kilogram of protein by 88.6%. In addition, it was found that compared with fishmeal and soybeans, microalgal proteins contained higher arginine, lysine and cysteine content, which exhibis the advantages of C. sorokiniana SU-9 as a feed.
Albalasmeh, A.A., Berhe, A.A., Ghezzehei, T.A. 2013. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97(2), 253-261.
Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M. 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science, 306(5693), 79-86.
Avcı, A., Kılıç, N.K., Dönmez, G., Dönmez, S. 2014. Evaluation of hydrogen production by Clostridium strains on beet molasses. Environmental Technology, 35(3), 278-285.
Bae, S.-M., Park, Y.-C., Lee, T.-H., Kweon, D.-H., Choi, J.-H., Kim, S.-K., Ryu, Y.-W., Seo, J.-H. 2004. Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzyme and Microbial Technology, 35(6), 545-549.
Battaglene, S.C., Cobcroft, J.M. 2007. Advances in the culture of striped trumpeter larvae: A review. Aquaculture, 268(1), 195-208.
Becker, E. 2007a. Micro-algae as a source of protein. Biotechnology advances, 25(2), 207-210.
Becker, E.W. 2007b. Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207-210.
Becker, W. 2004. 18 microalgae in human and animal nutrition. in: Handbook of microalgal culture: biotechnology and applied phycology, Vol. 312, Wiley Online Library.
Bishop, C.D., Angus, R.A., Watts, S.A. 1995. The use of feather meal as a replacement for fish meal in the diet of Oreochromis niloticus fry. Bioresource Technology, 54(3), 291-295.
Blazencic, J. 2007. Sistematika algi. NNK Internacional, Beograd.
Borlongan, I.G., Benitez, L.V. 1990. Quantitative lysine requirement of milkfish (Chanos chanos) juveniles. Aquaculture, 87(3-4), 341-347.
Boyle, N.R., Morgan, J.A. 2009. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC systems biology, 3(1), 4.
Cahu, C., Infante, J.Z., Escaffre, A.-M., Bergot, P., Kaushik, S. 1998. Preliminary results on sea bass (Dicentrarchus labrax) larvae rearing with compound diet from first feeding. Comparison with carp (Cyprinus carpio) larvae. Aquaculture, 169(1-2), 1-7.
Cai, T., Park, S.Y., Li, Y. 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.
Cardozo, K.H., Guaratini, T., Barros, M.P., Falcão, V.R., Tonon, A.P., Lopes, N.P., Campos, S., Torres, M.A., Souza, A.O., Colepicolo, P. 2007. Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(1-2), 60-78.
Chang, K.J.L., Dumsday, G., Nichols, P.D., Dunstan, G.A., Blackburn, S.I., Koutoulis, A. 2013. High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Applied microbiology and biotechnology, 97(15), 6907-6918.
Chen, C.-Y., Kuo, E.-W., Nagarajan, D., Ho, S.-H., Dong, C.-D., Lee, D.-J., Chang, J.-S. 2020a. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302, 122814.
Chen, C.-Y., Lee, M.-H., Leong, Y.K., Chang, J.-S., Lee, D.-J. 2020b. Biodiesel production from heterotrophic oleaginous microalga Thraustochytrium sp. BM2 with enhanced lipid accumulation using crude glycerol as alternative carbon source. Bioresource Technology, 306, 123113.
Chen, F., Johns, M.R. 1991. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophicChlorella sorokiniana. Journal of Applied Phycology, 3(3), 203-209.
Chen, F., Johns, M.R. 1994. Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture. Process Biochemistry, 29(4), 245-252.
Chen, F., Zhang, Y. 1997. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and microbial technology, 20(3), 221-224.
Chen, F., Zhang, Y., Guo, S. 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology letters, 18(5), 603-608.
Chen, G.-Q., Chen, F. 2006. Growing phototrophic cells without light. Biotechnology letters, 28(9), 607-616.
Chen, J.-H., Chen, C.-Y., Hasunuma, T., Kondo, A., Chang, C.-H., Ng, I.S., Chang, J.-S. 2019. Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresource Technology, 278, 17-25.
Cheng, H., Tian, G., Liu, J. 2013. Enhancement of biomass productivity and nutrients removal from pretreated piggery wastewater by mixotrophic cultivation of Desmodesmus sp. CHX1. Desalination and Water Treatment, 51(37-39), 7004-7011.
Chew, K.W., Chia, S.R., Show, P.L., Yap, Y.J., Ling, T.C., Chang, J.-S. 2018. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332-344.
Choi, J.A., Kim, D.-Y., Seo, Y.H., Han, J.-I. 2016. Application of Fe (NO3) 3-based as nitrogen source and coagulant for cultivation and harvesting of Chlorella sorokiniana. Bioresource technology, 222, 374-379.
Chojnacka, K., Marquez-Rocha, F.-J. 2004. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology, 3(1), 21-34.
Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P. 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. Journal of Applied Phycology, 11(2), 179-184.
Council, N.R. 2011. Nutrient requirements of fish and shrimp. National academies press.
Crawford, N. 2000. Nitrogen and sulfur. Biochemistry & molecular biology of plants.
Dai, Z., Wu, Z., Jia, S., Wu, G. 2014. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. Journal of Chromatography B, 964, 116-127.
Davies, S., Williamson, J., Robinson, M., Bateson, R. 1989. Practical inclusion levels of common animal by-products in complete diets for tilapia (Oreochromis mossambicus, Peters). Proceedings of the 3 International Symposium on Feeding rd and Nutrition of Fish, Toba, Japan. pp. 325-332.
De Swaaf, M.E., Sijtsma, L., Pronk, J.T. 2003. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnology and Bioengineering, 81(6), 666-672.
Del Campo, J.A., García-González, M., Guerrero, M.G. 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied microbiology and biotechnology, 74(6), 1163-1174.
Delgado, C.L., Wada, N., Rosegrant, M.W., Meijer, S., Ahmed, M. 2020. The future of fish. Issues and trends to.
Demirbaş, A. 2008. Production of biodiesel from algae oils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(2), 163-168.
Diana, J.S. 2009. Aquaculture production and biodiversity conservation. Bioscience, 59(1), 27-38.
Dominguez, H. 2013. Functional ingredients from algae for foods and nutraceuticals. Elsevier.
El-Sayed, A.-F.M. 1999. Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture, 179(1-4), 149-168.
El‐Dahhar, A., El‐Shazly, K. 1993. Effect of essential amino acids (methionine and lysine) and treated oil in fish diet on growth performance and feed utilization of Nile tilapia, Tilapia nilotica (L.). Aquaculture Research, 24(6), 731-739.
Estevez, M.S., Malanga, G., Puntarulo, S. 2001. Iron-dependent oxidative stress in Chlorella vulgaris. Plant Science, 161(1), 9-17.
Fernandez, E., Galvan, A. 2007. Inorganic nitrogen assimilation in Chlamydomonas. Journal of experimental botany, 58(9), 2279-2287.
Fidalgo, J.P., Cid, A., Torres, E., Sukenik, A., Herrero, C. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture, 166(1), 105-116.
Francisco, É.C., Franco, T.T., Wagner, R., Jacob-Lopes, E. 2014. Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess and biosystems engineering, 37(8), 1497-1505.
Furuya, W.M., Pezzato, L.E., Barros, M.M., Pezzato, A.C., Furuya, V.R., Miranda, E.C. 2004a. Use of ideal protein concept for precision formulation of amino acid levels in fish‐meal‐free diets for juvenile Nile tilapia (Oreochromis niloticus L.). Aquaculture Research, 35(12), 1110-1116.
Furuya, W.M., Pezzato, L.E., Barros, M.M., Pezzato, A.C., Furuya, V.R.B., Miranda, E.C. 2004b. Use of ideal protein concept for precision formulation of amino acid levels in fish-meal-free diets for juvenile Nile tilapia (Oreochromis niloticus L.). Aquaculture Research, 35(12), 1110-1116.
Ganuza, E., Anderson, A., Ratledge, C. 2008. High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Biotechnology letters, 30(9), 1559.
Gatlin III, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R. 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture research, 38(6), 551-579.
Goldman, J.C. 1977. Biomass production in mass cultures of marine phytoplankton at varying temperatures. Journal of Experimental Marine Biology and Ecology, 27(2), 161-169.
Griffiths, D., Thresher, C., Street, H. 1960. The heterotrophic nutrition of Chlorella vulgaris (Brannon No. 1 strain): with two figures in the text. Annals of botany, 24(1), 1-11.
Guedes, A.C., Malcata, F.X. 2012. Nutritional value and uses of microalgae in aquaculture. Aquaculture, 10(1516), 59-78.
Hülsen, T., Hsieh, K., Lu, Y., Tait, S., Batstone, D.J. 2018. Simultaneous treatment and single cell protein production from agri-industrial wastewaters using purple phototrophic bacteria or microalgae–a comparison. Bioresource technology, 254, 214-223.
Hardy, R.W. 2010. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5), 770-776.
Hemaiswarya, S., Raja, R., Kumar, R.R., Ganesan, V., Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27(8), 1737-1746.
Ho, S.-H., Chen, C.-Y., Chang, J.-S. 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource technology, 113, 244-252.
Hong, S.-J., Lee, C.-G. 2007. Evaluation of central metabolism based on a genomic database ofSynechocystis PCC6803. Biotechnology and Bioprocess Engineering, 12(2), 165-173.
Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G. 2010. Biodiesel production by microalgal biotechnology. Applied energy, 87(1), 38-46.
Huppe, H., Turpin, D. 1994. Integration of carbon and nitrogen metabolism in plant and algal cells. Annual review of plant biology, 45(1), 577-607.
Hussein, E.E.S., Dabrowski, K., El‐Saidy, D.M.S.D., Lee, B.J. 2014. Effect of dietary phosphorus supplementation on utilization of algae in the grow‐out diet of Nile tilapia O reochromis niloticus. Aquaculture research, 45(9), 1533-1544.
Inokuchi, R., Kuma, K.i., Miyata, T., Okada, M. 2002. Nitrogen‐assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiologia Plantarum, 116(1), 1-11.
Jackson, A. 2006. The importance of fishmeal and fish oil in aquaculture diets. International Aquafeed, 9(6), 18-21.
Jiang, Y., Chen, F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. Journal of the American Oil Chemists' Society, 77(6), 613-617.
Jiménez, A.M., Borja, R., Martı́n, A. 2004. A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented with Penicillium decumbens in batch reactors. Biochemical Engineering Journal, 18(2), 121-132.
Ju, Z.Y., Deng, D.-F., Dominy, W. 2012. A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture, 354-355, 50-55.
Kalavathi, D.F., Uma, L., Subramanian, G. 2001. Degradation and metabolization of the pigment—melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzyme and microbial technology, 29(4-5), 246-251.
Kim, S., Park, J.-e., Cho, Y.-B., Hwang, S.-J. 2013. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresource Technology, 144, 8-13.
Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M.M., Anderson, J.L. 2015. Fish to 2030: the role and opportunity for aquaculture. Aquaculture economics & management, 19(3), 282-300.
Kongjan, P., O-Thong, S., Angelidaki, I. 2011. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules. International Journal of Hydrogen Energy, 36(21), 14261-14269.
Kovač, D.J., Simeunović, J.B., Babić, O.B., Mišan, A.Č., Milovanović, I.L. 2013. Algae in food and feed. Food and Feed Research, 40(1), 21-32-21-32.
Kreeger, D., Langdon, C. 1993. Effect of dietary protein content on growth of juvenile mussels, Mytilus trossulus (Gould 1850). The Biological Bulletin, 185(1), 123-139.
Krogdahl, Å., Lea, T.B., Olli, J.J. 1994. Soybean proteinase inhibitors affect intestinal trypsin activities and amino acid digestibilities in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A: Physiology, 107(1), 215-219.
Kumar, K., Dasgupta, C.N., Das, D. 2014. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology, 167, 358-366.
Lai, Y.-C., Chang, C.-H., Chen, C.-Y., Chang, J.-S., Ng, I.S. 2019. Towards protein production and application by using Chlorella species as circular economy. Bioresource Technology, 289, 121625.
Laskin, A.I., Bennett, J.W., Gadd, G.M. 2002. Advances in Applied Microbiology. Elsevier Science.
Lee, C., Lee, C.-G. 2002. Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources. Journal of microbiology and biotechnology, 12(6), 979-985.
Lloyd, D. 1974. Dark respiration. in: Algal physiology and biochemistry, Vol. 10, Blackwell, pp. 505-529.
Lodi, A., Binaghi, L., De Faveri, D., Carvalho, J.C.M., Converti, A. 2005. Fed-batch mixotrophic cultivation of Arthrospira (Spirulina) platensis (Cyanophycea) with carbon source pulse feeding. Annals of microbiology, 55(3), 181-185.
Lourenço, S.O., Barbarino, E., Lavín, P.L., Lanfer Marquez, U.M., Aidar, E. 2004. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology, 39(1), 17-32.
Martins, S.I.F.S., Van Boekel, M.A.J.S. 2005. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chemistry, 90(1), 257-269.
Mata, T.M., Martins, A.A., Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217-232.
Millamena, O.M., Bautista-Teruel, M., Reyes, O., Kanazawa, A. 1998. Requirements of juvenile marine shrimp, Penaeus monodon (Fabricius) for lysine and arginine. Aquaculture, 164(1-4), 95-104.
Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.
Milovanović, I., Mišan, A., Šarić, B., Kos, J., Mandić, A., Simeunović, J. 2012. Evaluation of protein and lipid content and determination of fatty acid profile in selected species of cyanobacteria. CEFood 2012-Proceedings of 6th Central European Congress on Food.
Mitra, D., van Leeuwen, J.H., Lamsal, B. 2012. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research, 1(1), 40-48.
Moon, H.Y., Gatlin, D.M. 1991. Total sulfur amino acid requirement of juvenile red drum, Sciaenops ocellatus. Aquaculture, 95(1), 97-106.
Moon, M., Kim, C.W., Park, W.-K., Yoo, G., Choi, Y.-E., Yang, J.-W. 2013. Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Research, 2(4), 352-357.
Morales-Sánchez, D., Tinoco-Valencia, R., Kyndt, J., Martinez, A. 2013. Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnology for Biofuels, 6(1), 100.
Morris, I. 1974. Nitrogen assimilation and protein synthesis. Algal physiology and biochemistry, 10.
Mostafa, S.S. 2012. Microalgal biotechnology: prospects and applications. Plant science, 12, 276-314.
Muller-Feuga, A. 2000. The role of microalgae in aquaculture: situation and trends. Journal of applied phycology, 12(3-5), 527-534.
Nandeesha, M., Gangadhar, B., Varghese, T., Keshavanath, P. 1998. Effect of feeding Spirulina platensis on the growth, proximate composition and organoleptic quality of common carp, Cyprinus carpio L. Aquaculture Research, 29(5), 305-312.
Neilson, A., Lewin, R. 1974. The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia, 13(3), 227-264.
Norsker, N.-H., Barbosa, M.J., Vermuë, M.H., Wijffels, R.H. 2011. Microalgal production—a close look at the economics. Biotechnology advances, 29(1), 24-27.
Nutrition, N.R.C.S.o.W.F., Council, N.R. 1983. Nutrient requirements of warmwater fishes and shellfishes. National Academies.
Oh-Hama, T., Miyachi, S. 1988. Microalgal biotechnology: Chlorella, London: Cambridge University Press.
Onodera, T., Sase, S., Choeisai, P., Yoochatchaval, W., Sumino, H., Yamaguchi, T., Ebie, Y., Xu, K., Tomioka, N., Mizuochi, M., Syutsubo, K. 2013. Development of a treatment system for molasses wastewater: The effects of cation inhibition on the anaerobic degradation process. Bioresource Technology, 131, 295-302.
Palavesam, A., Beena, S., Immanuel, G. 2008. Effect of L-lysine supplementation with different protein levels in diets on growth, body composition and protein metabolism in pearl spot Etroplus suratensis (Bloch). Turkish Journal of Fisheries and Aquatic Sciences, 8(1), 133-139.
Perez-Garcia, O., Escalante, F.M., de-Bashan, L.E., Bashan, Y. 2011a. Heterotrophic cultures of microalgae: metabolism and potential products. Water research, 45(1), 11-36.
Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., Bashan, Y. 2011b. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11-36.
Pleissner, D., Lau, K.Y., Ki Lin, C.S. 2017. Utilization of food waste in continuous flow cultures of the heterotrophic microalga Chlorella pyrenoidosa for saturated and unsaturated fatty acids production. Journal of Cleaner Production, 142, 1417-1424.
Poddar, N., Sen, R., Martin, G.J.O. 2018. Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth. Algal Research, 33, 298-309.
Pongmaneerat, J. 1993. Replacement of fish meal by alternative protein sources in rainbow trout diets. 日本水産学会誌, 59(9), 1573-1579.
Pratoomyot, J., Bendiksen, E., Campbell, P., Jauncey, K., Bell, J.G., Tocher, D.R. 2011. Effects of different blends of protein sources as alternatives to dietary fishmeal on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture, 316(1-4), 44-52.
Ren, H.-Y., Liu, B.-F., Kong, F., Zhao, L., Xie, G.-J., Ren, N.-Q. 2014. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresource Technology, 169, 763-767.
Richmond, A. 2017. Handbook of microalgal mass culture (1986). CRC press.
Rocha, R.J., Ribeiro, L., Costa, R., Dinis, M.T. 2008. Does the presence of microalgae influence fish larvae prey capture? Aquaculture research, 39(4), 362-369.
Rodríguez‐Serna, M., Olvera‐Novoa, M., Carmona‐Osalde, C. 1996. Nutritional value of animal by‐product meal in practical diets for Nile tilapia Oreochromis niloticus (L.) fry. Aquaculture Research, 27(1), 67-73.
Salati, S., D'Imporzano, G., Menin, B., Veronesi, D., Scaglia, B., Abbruscato, P., Mariani, P., Adani, F. 2017. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresource technology, 230, 82-89.
Sans, P., Combris, P. 2015. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Science, 109, 106-111.
Satyawali, Y., Balakrishnan, M. 2008. Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. Journal of environmental management, 86(3), 481-497.
Servaites, J.C., Faeth, J.L., Sidhu, S.S. 2012. A dye binding method for measurement of total protein in microalgae. Analytical Biochemistry, 421(1), 75-80.
Shakeri, M., Sugano, Y., Shoda, M. 2007. Production of dye-decolorizing peroxidase (rDyP) from complex substrates by repeated-batch and fed-batch cultures of recombinant Aspergillus oryzae. Journal of Bioscience and Bioengineering, 103(2), 129-134.
Shelly, K., Higgins, T., Beardall, J., Wood, B., McNaughton, D., Heraud, P. 2007. Characterising nutrient-induced fluorescence transients (NIFTs) in nitrogen-stressed Chlorella emersonii (Chlorophyta). Phycologia, 46(5), 503-512.
Shi, X.-M., Zhang, X.-W., Chen, F. 2000. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme and Microbial Technology, 27(3), 312-318.
Shimeno, S., Masumoto, T., Hujita, T., Mima, T., Ueno, S. 1993. Alternative protein sources for fish meal in diets of young yelowtail. Nippon Suisan Gakkaishi, 59(1), 137-143.
Shriwastav, A., Gupta, S.K., Ansari, F.A., Rawat, I., Bux, F. 2014. Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresource Technology, 174, 60-66.
Sirianuntapiboon, S., Zohsalam, P., Ohmomo, S. 2004. Decolorization of molasses wastewater by Citeromyces sp. WR-43-6. Process biochemistry, 39(8), 917-924.
Sivaramakrishnan, R., Incharoensakdi, A. 2017. Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae. Journal of phycology, 53(4), 855-868.
Slocombe, S.P., Ross, M., Thomas, N., McNeill, S., Stanley, M.S. 2013. A rapid and general method for measurement of protein in micro-algal biomass. Bioresource Technology, 129, 51-57.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial applications of microalgae. Journal of bioscience and bioengineering, 101(2), 87-96.
Sun, N., Wang, Y., Li, Y.-T., Huang, J.-C., Chen, F. 2008. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochemistry, 43(11), 1288-1292.
Tacon, A. 1999. Overview of world aquaculture and aquafeed production. Book of Abstracts, World Aquaculture, 99, 26 April-2 May 1999, Sydney, Australia.
Tacon, A. 1985. Utilisation of conventional and unconventional protein sources in practical fish feeds. Nutrition and feeding in fish, 119-145.
Tam, N.F.Y., Wong, Y.S. 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 57(1), 45-50.
Tan, C.K., Johns, M.R. 1991. Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia, 215(1), 13-19.
Tanner, W. 2000. The Chlorella hexose/H+-symporters.
Tveterås, S., Asche, F., Bellemare, M.F., Smith, M.D., Guttormsen, A.G., Lem, A., Lien, K., Vannuccini, S. 2012. Fish is food-the FAO’s fish price index. PLoS One, 7(5), e36731.
Viola, S., Angeoni, H., Lahav, E. 1994. PRESENT LIMITS OF PROTEIN SPARING BY AMINO-ACID SUPPLEMENTATION OF PRACTICAL CARP AND TILAPIA FEEDS. Israeli Journal of Aquaculture-Bamidgeh, 46(4), 203-211.
Wang, Q., Yu, Z., Wei, D. 2020. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater. Bioresource Technology, 313, 123499.
Wang, X., Jin, B. 2009. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. Journal of Bioscience and Bioengineering, 107(2), 138-144.
Wase, N., Tu, B., Allen, J.W., Black, P.N., DiRusso, C.C. 2017. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae. Plant Physiology, 174(4), 2146.
Wilhelm, C., Büchel, C., Fisahn, J., Goss, R., Jakob, T., LaRoche, J., Lavaud, J., Lohr, M., Riebesell, U., Stehfest, K. 2006. The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae.
Wu, G., Fang, Y.-Z., Yang, S., Lupton, J.R., Turner, N.D. 2004. Glutathione metabolism and its implications for health. The Journal of nutrition, 134(3), 489-492.
Wu, S.-T., Yu, S.-T., Lin, L.-P. 2005. Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochemistry, 40(9), 3103-3108.
Xie, T., Xia, Y., Zeng, Y., Li, X., Zhang, Y. 2017. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Bioresource technology, 233, 247-255.
Yang, C., Hua, Q., Shimizu, K. 2000. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical engineering journal, 6(2), 87-102.
Yang, C., Hua, Q., Shimizu, K. 2002. Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Applied microbiology and biotechnology, 58(6), 813-822.
Yongmanitchai, W., Ward, O.P. 1991. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol., 57(2), 419-425.
Zehr, J.P., Ward, B.B. 2002. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl. Environ. Microbiol., 68(3), 1015-1024.
Zhan, J., Rong, J., Wang, Q. 2017. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International journal of hydrogen energy, 42(12), 8505-8517.
Zhang, H., Wang, W., Li, Y., Yang, W., Shen, G. 2011. Mixotrophic cultivation of Botryococcus braunii. Biomass and Bioenergy, 35(5), 1710-1715.
Zhao, P., Gu, W., Huang, A., Wu, S., Liu, C., Huan, L., Gao, S., Xie, X., Wang, G. 2018. Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis. Journal of phycology, 54(1), 34-43.
Zheng, Y., Chi, Z., Lucker, B., Chen, S. 2012. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresource technology, 103(1), 484-488.
Zheng, Y., Li, T., Yu, X., Bates, P.D., Dong, T., Chen, S. 2013. High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Applied Energy, 108, 281-287.
校內:2025-08-27公開