| 研究生: |
蔡宏佳 Tsai, Hung-Chia |
|---|---|
| 論文名稱: |
添加In對Sn-3Ag-2Sb銲點微結構與低週疲勞特性之研究 Effects of Indium Addition on the Microstructure Evolution and Low-Cycle Fatigue Property of Sn-3Ag-2Sb Solder Joints |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 無鉛銲料 、硬度 、Ag2(Sn In) 、低週疲勞 、Sn-Ag-Sb-In |
| 外文關鍵詞: | low cycle fatigue, hardness, lead-free solder, Ag2(Sn In), Sn-Ag-Sb-In |
| 相關次數: | 點閱:186 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於探討添加1~5 wt% In對Sn-3Ag-2Sb無鉛銲料熔點、微結構、硬度及界面 IMC層之影響,同時利用單邊搭接試件及高溫熱儲存以評估銲點之低週疲勞與抗熱性之影響。
研究結果顯示Sn-3Ag-2Sb-xIn(SASxIn,x=1,2,3,4,5wt%)銲料熔點隨著In的增加而降低,但固、液相區間卻隨之擴大。Sn-3Ag-2Sb銲料中添加In後,化合物Ag3Sn中Sn原子逐漸被In原子所替代;在未熱儲存時, SAS2In及SAS3In為Ag3(Sn,In),而SAS4In時轉變成Ag2(Sn,In);625小時熱儲存後,其比例的轉變點提早在SAS3In時發生,且其形貌隨In含量的上升及熱儲存時間的增加,慢慢由長條與片狀轉變為團塊狀。Sn-3Ag-2Sb-xIn銲料與Cu銲接後,界面層Cu6Sn5中Sn原子被In替代形成Cu6(Sn,In)5。IMC層厚度隨熱儲存時間的增加而變厚,且In添加量越多之銲料,其IMC層成長的幅度越大。
低週疲勞測試中,在±0.020 mm固定位移量下,銲點第二週期之剪切強度隨著In含量提高而上升,2Sb銲料的剪切強度為34.33 N,在添加In後,SAS1In~SAS5In分別為37.02 N、37.48 N 、41.12 N、48.09 N、51.29 N。此外,未經熱儲存之銲點疲勞壽命大致隨In的添加而增加。而經熱儲存後,由於銲料軟化導致破斷韌性提高,故SAS2In與SAS3In壽命隨著熱儲存時間的增加而延長,SAS4In在225小時熱儲存後,其壽命亦較未熱儲存長,但當時間延長至625小時後,界面金屬層逐漸增厚,形成應力集中效應,使SAS4In銲點破壞模式由銲料內部轉變成銲料與界面的混合模式,此時疲勞壽命將大幅減少。綜合銲料熔點、微結構、疲勞壽命及界面層之變化,研究結果顯示Sn-3Ag-2Sb-3In銲料會有較佳之性質。
The goal of this research is to evaluate the effects of adding 1~5wt% Indium into Sn-3Ag-2Sb lead-free solder on melting point, microstructure, microhardness and the interfacial reaction with Cu substrate. Furthermore, the single lap specimens and high temperature storage were used to evaluate the low cycle fatigue and heat-resistance of Sn-3Ag-2Sb-xIn solder joints.
Experimental results show that the melting point of Sn-3Ag-2Sb-xIn solders decreased with indium additions, but the gap between solidus and liquidus temperature (Mushy zone) was expanded at the same time. Indium addition into the Sn-3Ag-2Sb, lead to the partial substitution of Sn atoms in Ag3Sn by Indium. The formation of Ag-Sn-In compound is Ag3(Sn,In) in Sn-3Ag-2Sb-2In and Sn-3Ag-2Sb-3In samples. However, the compounds transform gradually into Ag2(Sn,In) when In addition reach 4wt% and over. After thermal storage for 625 hours, the transformation will be obvious even in Sn-3Ag-2Sb-3In.
With the increase of indium additions or thermal storage time, the morphology of Ag-Sn-In compounds change from rod-like or disc-like into massive type.
When Sn-3Ag-2Sb-xIn solders combine with Cu substrate, Ag-Sn-In and Cu-Sn-In IMC compounds were observed on the interfacial microstructure. After the 150℃ thermal storage, thickness of IMC layer will be raised as the Indium addition increasing.
In the condition with constant displacement of 0.020mm, shear strength of the as-soldered joints is increased with greater In additions. The shear strengths are 34.33 N(Sn-3Ag-2Sb), 37.02 N(1 wt% In), 37.48 N(2 wt% In), 41.12 N(3 wt% In), 48.09 N(4 wt% In), 51.29 N(5 wt% In). Fatigue life of the as-soldered joint approximately increases with greater In additions, and 5 wt% In solder has better fatigue life.
After 150˚C thermal storage, fatigue life will improve because of the softening of solder joints. So the fatigue life of 2wt% In and 3wt%In solder joints are higher than as-soldered. The thickness of the Intermetallic Compound(IMC) are also increased after thermal storage. The fracture modes of 4wt% In solder joint transit from solder fracture mode to mixture mode with increasing indium additions and storage time. In the meanwhile, fatigue life would be decreased.
With compare of melting point, microstructure, fatigue life and interfacial behavior of Sn-Ag-Sb-xIn solder. The solder contains 3wt% Indium has better behaviors.
1. K. Zeng & K.N. Tu, "Six case of reliability study of Pb-free solder joint in electronic packaging technology", Materials Science and Engineering R, 2002, Vol.38, pp. 55-105.
2. P. Cox & G. Drys, "Directive 2002/95/EC of the european parliament and of the council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment", Official Journal of the European Union, 2003.
3. S. Choi, T.R. Bieler, & J.P. Lucas, "Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging", Journal of Electronic Materials, 1999, Vol.28(11), pp. 1209-1205.
4. V.I. Igoshev & U. Mihon, "Fracture of Sn-3.5%Ag solder alloy under creep,"", Journal of Electronic Materials, 2000, Vol.29(12), pp. 1356-1361.
5. H.T. Lee, H.S. Lin, C.S. Lee, & P.W. Chen, "Reliability of Sn–Ag–Sb lead-free solder joints", Materials Science and Engineering A, 2005, Vol.407, pp. 36–44.
6. C. Andersson, Z. Lai, J. Liu, H. Jiang, & Y. Yu, "Comparison of isothermal mechanical fatigue properties of lead-free solder joints and bulk solders", Materials Science and Engineering A, 2005, Vol.394, pp. 20–27.
7. R.A. Islam, Y.C. Chan, W. Jillek, & S. Islam, "Comparative study of wetting behavior and mechanical properties (microhardness) of Sn–Zn and Sn–Pb solders", Microelectronics Journal, 2006, Vol.37, pp. 705–713.
8. R.K. Shiue, L.W. Tsay, & C.L. Lin, "A study of Sn-Bi-Ag-(In) lead-free solders", Journal of Materials Science, 2003, Vol.38, pp. 1269 – 1279.
9. 王照中, "電子產品之溫度循環試驗規範簡介", 電子檢測與品管, 2000(42), pp. 44-48.
10. J.H.L. Pang, B.S. Xiong, & T.H. Low, "Low cycle fatigue study of lead free 99.3Sn–0.7Cu solder alloy", International Journal of Fatigue, 2004, Vol.26, pp. 865–872.
11. 饒慧美, "添加Sb、Cu對無鉛銲料Sn-Ag銲點之機械性質及微結構研究", 國立成功大學機械研究所, 碩士論文, 2000.
12. 廖天龍, "添加Sb 對Sn-Ag 無鉛銲料之銲點剪切強度影響", 國立成功大學機械研究所, 碩士論文, 2001.
13. 楊傳鏈, "添加Sb 對Sn-Ag 無鉛銲料銲點微結構與剪切強度之影響", 國立成功大學機械研究所, 碩士論文, 2002.
14. 李政賢, "Sn-Ag-xSb無鉛錫銲接點微結構與低週疲勞之研究", 國立成功大學機械研究所, 碩士論文, 2003.
15. 胡順源, "Sn-Ag-xSb無鉛錫銲接點與Au/Ni-P/Cu金屬層之界面微結構與剪切強度研究", 國立成功大學機械研究所, 碩士論文, 2003.
16. 陳明宏, "添加Sb對Sn-Ag無鉛銲料銲點冶金性質與機械性質之研究", 國立成功大學機械研究所, 博士論文, 2003.
17. 許媛婷, "Sn-Ag-Sb-xIn無鉛銲料接點微結構與低週疲勞之研究", 國立成功大學機械研究所, 碩士論文, 2006.
18. U.S.A., "Cercla priority list of hazardous substances", 1997.
19. 詹益淇 & 莊東漢, "無鉛錫銲的回顧與最新發展", 電子月刊第六卷,第三期, 2000, pp. 226-237.
20. 陳文彥, "BGA用基板台灣發展現況", 工業材料,第127期, 1997, pp. 127-134.
21. N.C. Lee, "Getting ready for lead-free solder", Soldering & Surface Mount Technology, 1997(26), pp. 65-68.
22. D. Suraski & K. Seelig, "The current status of lead-free solder alloys", IEEE Transactions on Electronics Package Manufacturing, 2001, Vol.24(4), pp. 244-248.
23. M. Abtew & G. Selvaduray, "Lead-free solders in microelectronics", Materials Science and Engineering, 2000, Vol.27(5-6), pp. 95-141.
24. S. Choi, T.R. Bieler, & J.P. Lucas, "Creep properties of Sn-Ag solder joints containing intermetallic particles", JOM, 2001, pp. 22-26.
25. W. Yang & R.W. Messler, "Microstructure evolution of eutectic Sn-Ag solder joints", Journal of Electronic Materials, 1994, Vol.23(8), pp. 765-772.
26. K. Suganuma, "Interface phenomena in lead-free soldering", First International Symposium on 1999, 1999, pp. 620-625.
27. M. McCormack, S. Jin, G.W. Kammlott, & H.S. Chen, "New Pb-free solder alloy with superior mechanical properties", Applied Physics Letter, 1993, Vol.63(1), pp. 15-17.
28. J.K. Lin, A.D. Silva, D. Frear, & Y. Guo, "Characterization of lead-free solders and under bump metallurgies for flip-chip package", IEEE 2001 Electronic Components and Technology Conference, 2001, Vol.25(3), pp. 300-307.
29. D.R. Flanders, E.G. Jacobs, & R.F. Pinizzotto, "Activation energies of intermetallic growth of Sn-Ag eutectic solder on copper substrates", Journal of Electronic Materials, 1997, Vol.26(7), pp. 883-887.
30. A.Z. Miric & A. Grusd, "Lead-free alloys", Soldering & Surface Mount Technology, 1998, Vol.10(1), pp. 19-25.
31. Y. Miyazawa & T. Ariga, "Microstructural change and hardness of lead free solder alloys", Environmentally Conscious Design and Inverse Manufacturing, 1999, pp. 616-619.
32. 林秀如, 游善溥, 洪敏雄, & 王木琴, "共晶錫鋅無鉛焊錫之研究", 1999材料年會論文集, 1999.
33. K.S. Kim, S.H. Huh, & K. Suganuma, "Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints", Journal of Alloys and Compounds, 2003, Vol.352, pp. 226-236.
34. D.R. Frear, D. Grivas, & J.W. Morris, "The effect of Cu6Sn5 whisker precipitates in bulk 60Sn-40Pb solder", Journal of Electronic Materials, 1987, Vol.16(5), pp. 181-186.
35. J.C. Foley, A. Gickler, F.H. Leprovost, & D. Brown, "Analysis of ring and plug shear strengths for comparison of lead-free solders", Journal of Electronic Materials,, 2000, Vol.29(10), pp. 1258-1263.
36. A.S.M, "Alloy phase diagrams", ASM handbook, 1990, Vol.3.
37. J.L. Freer & J.W. Morris, "Microstructure and creep of eutectic indium/tin on copper and nickel substrates", Journal of Electronic Materials, 1992, Vol.21, pp. 647-652.
38. S.K. Kang & A.K. Sarkhel, "Lead(Pb)-free solders for electronic packaging", Journal of Electronic Materials, 1994, Vol.23(8), pp. 701-707.
39. M. McCormack, H.S. Chen, G.W. Kammlott, & S. Jin, "Significantly improved mechanical properties of Bi-Sn solder alloys by Ag-doping", Journal of Electronic Materials, 1997, Vol.26(8), pp. 954-958.
40. C.F. Chen, S.K. Lahiri, & P. Yuan, "An Intermetallic study joints with Sn-Ag-Cu lead-free solder", Electronics Packing Technology Conference, 2000, pp. 72-80.
41. Y. Kariya & M. Otsuka, "Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloy", Journal of Electronic Materials, 1998, Vol.27(11), pp. 1229-1235.
42. S.W. Yoon, C.J. Park, S.H. Hong, J.T. Moon, I.S. Park, & H.S. Chun, "Interfacial reaction and solder joint reliability of Pb-free solders in lead frame chip scale packages (LF-CSP)", Journal of Electronic Materials, 2000, Vol.29, pp. 1233-1240.
43. D.R. Frear, J.W. Jang, J.K. Lin, & C. Zhang, "Pb-free solder for flip-chip interconnects", JOM, 2001, pp. 28-32.
44. M.S. Yeh, "Effects of indium on the mechanical properties of ternary Sn-In-Ag solders", Journal of Electronic Materials, 2000, Vol.29(12), pp. 1356-1361.
45. 黃于恬, "Mechanisms for the intermetallic Formation during the Sn-20In-2.8Ag/Ni Soldering Reactions", 國立臺灣大學材料科學與工程學研究所,碩士論文, 1999.
46. T.H. Chuang, K.W. Huang, & W.H. Lin, "Mechanisms for the intermetallic Formation during the Sn-20In-2.8Ag/Ni Soldering Reactions", Journal of Electronic Materials, 2004, Vol.33(4), pp. 374-381.
47. G.P. Vassilev, E.S. Dobrev, & J.C. Tedenac, "Experimental study of the Ag–Sn–In phase diagram", Journal of Alloys and Compounds, 2005, Vol.399, pp. 118-125.
48. Y. Kariya & M. Otsuka, "Effect of bismuth on the isothermal fatigue properties of Sn-3.5mass%Ag solder alloy", Journal of Electronic Materials, 1998, Vol.27(7), pp. 866-870.
49. R.J. McCabe & M.W. Fine, "Creep of tin, Sb-solution-strengthened tin, and SbSn-precipitate-strengthened tin", Metallurgical and Materials Transactions A, 2002, Vol.33A, pp. 1531-1539.
50. G. Petzow & G. Effenberg, "Ternary Alloys", VCH Verlagsgesellschaft, 1988, Vol.2.
51. 宋立文, "冷卻速率及Cu/Ni-P/Au金屬層對 Sn-Ag-xSb無鉛銲錫接點之剪切強度特性及界面微結構的影響", 國立成功大學機械研究所, 碩士論文, 2004.
52. 李祖耀, "添加In對Sn-Ag-Sb無鉛銲料銲點之效應研究", 國立成功大學機械研究所, 碩士論文, 2006.
53. X.Q. Shi, H.L.J. Pang, W. Zhou, & Z.P. Wang, Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy, in International Journal of Fatigue. 2000. pp. 217-218.
54. J.H.L. Pang, K.H. Tan, X. Shi, & Z.P. Wang, "Thermal cycling aging effects on microstructural and mechanical properties of a single PBGA solder joint specimen", IEEE Transactions on Components and Packaging Technologies, 2001, Vol.24(1), pp. 10-15.
55. D.J. Xie, Y.C. Chan, J.K.L. Lai, & I.K. Hui, "Fatigue life estimation of surface mount solder joints", IEEE Transactions on Component, Packaging, and Manufacturing Technology-Part B, 1996, Vol.19(3).
56. Z. Guo & H. Conrad, "Fatigue crack growth rate in 63Sn37Pb solder joints", Journal of electronic Packaging, 1993, Vol.115, pp. 159-164.
57. Z. Guo, A.F. Sprecher, D.Y. Jung, & H. Conrad, "Influence of environment on the fatigue of Pb-Sn solder joint", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1991, Vol.14(4), pp. 833-837.
58. ASTM F1269-89, "Test methods for destructive shear testing of ball bonds", American Society for testing of Materials, 1995.
59. X. Liu, S. Xu, G.Q. Lu, & D.A. Dillard, "Stacked solder bumping technology for improved solder joint reliability", Microelectronics Reliability, 2001, Vol.41, pp. 1979-1992.
60. T.H. Ju & Y.C. Lee, "Effects of ceramic ball-grid-array package's manufacturing variations on solder joint reliability", Journal of Electronic Packaging, 1994, Vol.116, pp. 242-248.
61. E.C. Cutiongco, S. Vaynman, M.E. Fine, & D.A. Jeannotte, "Isothermal fatigue of 63Sn-37Pb solder", Journal of Electronic Packaging, 1990, Vol.112, pp. 110-114.
62. H.D. Solomon, "The influence of the cycle frequency and wave shape on the fatigue life of leaded chip carrier printed wiring board interconnections", Journal of Electronic Packaging, 1993, Vol.115, pp. 173-179.
63. H.D. Solomon & E.D. Tolksdorf, "Energy approach to the fatigue of 60/40 solder: Part Ⅰ- influence of temperature and cycle frequency", Journal of Electronic Packaging, 1995, Vol.117, pp. 130-135.
64. C. Kanchanomai, Y. Miyashita, T. Mutoh, & S.L. Mannan, "Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5Sn-3.5Ag", Materials Science and Engineering, 2003, pp. 90-98.
65. A.M. Handbook, "Properties and selection: nonferrous alloys and special-purpose materials", ASM International, 1990, Vol.2.
66. H.D. Solomon, "Low cycle fatigue of Sn96Pb solder with reference to eutectic solder and a high Pb solder", Journal of Electronic Packaging, 1991, Vol.113, pp. 102-108.
67. C. Kanchanomai, Y. Miyashita, & Y. Mutohm, "Low-cycle fatigue behavior and mechanisms of a lead-free solder 96.5Sn/3.5Ag", Journal of Electronic Materials, 2002, Vol.31(2), pp. 142-151.
68. C. Kanchanomai, S. Yamamoto, Y. Miyashita, Y. Mutoh, & A.J. McEvily, "Low cycle fatigue test for solders using non-contact digital image measurement system", International Journal of Fatigue, 2002, Vol.24, pp. 57-67.
69. H. Jiang, R. Hermann, & W.J. Plumbridge, "High-strain fatigue of Pb-Sn eutectic solder alloy", Journal of Materials Science, 1996, Vol.31, pp. 6455-6461.
70. H.K. Kim & K.N. Tu, "Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening", Physical Review B53, 1996, pp. 16027–16034.
71. P.G. Harris & K.S. Chaggar, "The role of intermetallic compounds in lead-free soldering", Soldering & Surface Mount Technology, 1998, pp. 38-52.
72. R.A. Gagliano & M.E. Fine, "Growth of η phase scallops and whiskers in liqiud tin-solid copper reaction couples", JOM, 2001, pp. 33-38.
73. Y. Wu, E.G. Jacobs, C. Pouraghabgher, & R.F. Pinizzotto, "In-situ TEM study of copper-tin intermetallic formation", Materials Research Society Symposium Proceeding, 1994, Vol.323, pp. 165-170.
74. H.K. Kim, H.K. Liou, & K.N. Tu, "Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu", Applied Physics Letters, 1995, Vol.66(18), pp. 2337-2339.
75. K.N. Tu, "Cu/Sn interfacial reaction: thin-film case versus bulk case", Materials Chemistry and Physics, 1996, Vol.46, pp. 217-223.
76. J.O.G. Parent, D.D. Chung, & I.M. Bernstein, "Effects of intermetallic formation at the interface between copper and lead-tin solder", Journal of Materials Science, 1988, Vol.23, pp. 2564-2572.
77. H.T. Lee, M.H. Chen, H.M. Jao, & T.L. Liao, "Influence of interfacial intermetallic compound on fracture behavior of solder joints", Materials and Engineering A, 2003, Vol.358, pp. 134-141.