| 研究生: |
洪鳳嬬 Hung, Feng-Ru |
|---|---|
| 論文名稱: |
白胺酸反應調控蛋白質在創傷弧菌致病機制中所扮演之角色 Role of leucine-responsive regulatory protein, Lrp, in pathogenesis of Vibrio vulnificus |
| 指導教授: |
何漣漪
Hor, Lien-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 創傷弧菌 、MARTX毒素 、白胺酸轉錄調節子 、移生能力 、鐵攝取能力 |
| 外文關鍵詞: | Vibrio vulnificus, MARTX, Lrp, colonization, iron-acquisition |
| 相關次數: | 點閱:125 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
創傷弧菌(Vibio vulnificus) 屬於革蘭氏陰性病原菌,藉由傷口或含菌的食物感染人類,會造成敗血症和厲害的皮膚病變如壞死性筋膜炎。此菌一個重要的毒力因子是multifunctional-autoprocessing RTX (MARTX),具細胞毒殺性,也能保護細菌免於被吞噬細胞吞噬。過去我們意外分離到一株失去運動能力、細胞毒殺性和對小鼠毒力的菌株NY303。此菌株於可轉譯出白胺酸轉錄調節子(leucine-responsive regulatory protein, lrp) 的基因上發生了自發性點突變;將lrp 基因剔除可得到和NY303 類似之表型特性,顯示Lrp 可能參與在創傷弧菌之毒力調控機制中。為了瞭解lrp 突變株如何失去細胞毒殺性,我們首先確認MARTX 的mRNA和蛋白質表現量,發現在NY303 和lrp 突變株中,不管是rtxA1 之mRNA或MARTX 之蛋白質產量都減少了。負責將MARTX 由細胞內分泌至細胞外之基因,rtxB、rtxD 和rtxE 的mRNA 表現量也下降了。進一步觀察被lrp 突變株感染的RAW264.7 細胞,也發現其所含之MARTX 的量較被野生株感染的細胞少。但是,雖然突變株之MARTX 表現量減少,卻還具有抑制吞噬細胞吞噬的能力,故推測在lrp 突變株中,MARTX表現量降低可能並非造成其失去對小鼠的毒力之主要原因。為了瞭解Lrp 如何調控創傷弧菌之毒力,我們測試細菌lrp 突變株之移生能力。相較於野生株,lrp 突變株在一般小鼠背部氣囊之移生能力極差,而且當感染嗜中性白血球低下之小鼠,或是將野生株和lrp 突變株共同感染一般小鼠,lrp 突變株之移生能力只能部分恢復,故推測lrp 突變株進到小鼠體內時會面臨生長的缺陷,導致其毒力之喪失。而我們也發現lrp 突變株在小鼠血清中的生長較野生株差。但有趣的是,lrp 突變株在小鼠全血中的生長較小鼠血清中好,故我們推測紅血球中的血紅素可以幫助lrp 突變株的生長。的確,當於小鼠血清中加入氯化血紅素(hemin)、血紅蛋白(hemoglobin),或是可產生游離態三價鐵離子之檸檬酸鐵銨(ferric ammonium citrate),皆可使lrp 突變株的生長能力恢復。而lrp 突變株中和鐵質獲取相關之基因,如和siderophore 生合成相關之基因或血紅素接受器HupA之mRNA表現量也較野生株低,由此結果推測lrp 突變株攝鐵能力較差可能是導致此突變株進入宿主後無法正常地生長的原因之一。
Vibrio vulnificus, a gram-negative bacterial pathogen, can cause septicemia and skin lesions as severe as necrotizing fasciitis via wound or food-borne infection. An important virulence factor of this organism is the multifunctional-autoprocessing RTX (MARTX), which mediates cytotoxicity and can protect the bacteria from phagocytosis. We have serendipitously isolated a spontaneous avirulent mutant, NY303, with greatly reduced motility/chemotaxis, cytotoxicity and virulence in the mouse. The spontaneous mutation resulting in loss of cytotoxicity and virulence was mapped to the gene encoding leucine-responsive regulatory protein (lrp). A mutant with a deletion in lrp (lrp mutant) displayed a phenotype similar to that of NY303, confirming the involvement of Lrp in the regulation of virulence. In this study, we checked the mRNA and protein levels of MARTX in NY303 and the lrp mutant, and found that they were reduced in both mutants. However, the ability of the mutants to inhibit phagocytosis was not affected, suggesting that the reduced MARTX levels may not be responsible for loss of virulence of the lrp mutants. We further found that the lrp mutant colonized poorly in the mouse due to its defect in growth per se after entering the mouse body. The poor growth of lrp mutant in mouse serum was greatly enhanced in that supplemented with hemin, hemoglobin or ferric ammonium citrate, and a few iron acquisition-associated genes were down-regulated in this mutant. The defect in iron acquisition may partly explain the poor growth of lrp mutant in vivo.
1. Kaspar CW, Tamplin ML. 1993. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol 59:2425-2429.
2. Hollis DG, Weaver RE, Baker CN, Thornsberry C. 1976. Halophilic Vibrio species isolated from blood cultures. J Clin Microbiol 3:425-431.
3. Strom MS, Paranjpye RN. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2:177-188.
4. Tison DL, Nishibuchi M, Greenwood JD, Seidler RJ. 1982. Vibrio vulnificus biogroup 2: new biogroup pathogenic for eels. Appl Environ Microbiol 44:640-646.
5. Amaro C, Biosca EG, Fouz B, Garay E. 1992. Electrophoretic analysis of heterogeneous lipopolysaccharides from various strains of Vibrio vulnificus biotypes 1 and 2 by silver staining and immunoblotting. Curr Microbiol 25:99-104.
6. Amaro C, Hor LI, Marco-Noales E, Bosque T, Fouz B, Alcaide E. 1999. Isolation of Vibrio vulnificus serovar E from aquatic habitats in Taiwan. Appl Environ Microbiol 65:1352-1355.
7. Amaro C, Biosca EG. 1996. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol 62:1454-1457.
8. Efimov V, Danin-Poleg Y, Raz N, Elgavish S, Linetsky A, Kashi Y. 2013. Insight into the evolution of Vibrio vulnificus biotype 3's genome. Front Microbiol 4:393.
9. Bisharat N, Agmon V, Finkelstein R, Raz R, Ben-Dror G, Lerner L, Soboh S, Colodner R, Cameron DN, Wykstra DL, Swerdlow DL, Farmer JJ, 3rd. 1999. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet 354:1421-1424.
10. Bisharat N, Cohen DI, Harding RM, Falush D, Crook DW, Peto T, Maiden MC. 2005. Hybrid Vibrio vulnificus. Emerg Infect Dis 11:30-35.
11. Bryant J, Chewapreecha C, Bentley SD. 2012. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol 7:1283-1296.
12. Bross MH, Soch K, Morales R, Mitchell RB. 2007. Vibrio vulnificus infection: diagnosis and treatment. Am Fam Physician 76:539-544.
13. Tsao CH, Chen CC, Tsai SJ, Li CR, Chao WN, Chan KS, Lin DB, Sheu KL, Chen SC, Lee MC, Bell WR. 2013. Seasonality, clinical types and prognostic factors of Vibrio vulnificus infection. J Infect Dev Ctries 7:533-540.
14. Jones MK, Oliver JD. 2009. Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723-1733.
15. Blake PA, Merson MH, Weaver RE, Hollis DG, Heublein PC. 1979. Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. N Engl J Med 300:1-5.
16. Linkous DA, Oliver JD. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 174:207-214.
17. Hlady WG, Klontz KC. 1996. The epidemiology of Vibrio infections in Florida, 1981-1993. J Infect Dis 173:1176-1183.
18. Warnock EW, 3rd, MacMath TL. 1993. Primary Vibrio vulnificus septicemia. J Emerg Med 11:153-156.
19. Hilton T, Rosche T, Froelich B, Smith B, Oliver J. 2006. Capsular polysaccharide phase variation in Vibrio vulnificus. Appl Environ Microbiol 72:6986-6993.
20. McPherson VL, Watts JA, Simpson LM, Oliver JD. 1991. Physiological effects of the lipopolysaccharide of Vibrio vulnificus on mice and rats. Microbios 67:141-149.
21. Elmore SP, Watts JA, Simpson LM, Oliver JD. 1992. Reversal of hypotension induced by Vibrio vulnificus lipopolysaccharide in the rat by inhibition of nitric oxide synthase. Microb Pathog 13:391-397.
22. Paranjpye RN, Lara JC, Pepe JC, Pepe CM, Strom MS. 1998. The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. Infect Immun 66:5659-5668.
23. Lee JH, Rho JB, Park KJ, Kim CB, Han YS, Choi SH, Lee KH, Park SJ. 2004. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun 72:4905-4910.
24. Ran Kim Y, Haeng Rhee J. 2003. Flagellar basal body flg operon as a virulence determinant of Vibrio vulnificus. Biochem Biophys Res Commun 304:405-410.
25. Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Lee HJ, Kim SM, Kim KS, Lee KH, Park SJ. 2006. Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun 74:5586-5594.
26. Wright AC, Simpson LM, Oliver JD. 1981. Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect Immun 34:503-507.
27. Simpson LM, Oliver JD. 1983. Siderophore production by Vibrio vulnificus. Infect Immun 41:644-649.
28. Tan W, Verma V, Jeong K, Kim SY, Jung CH, Lee SE, Rhee JH. 2014. Molecular characterization of vulnibactin biosynthesis in Vibrio vulnificus indicates the existence of an alternative siderophore. Front Microbiol 5:1.
29. Kim IH, Shim JI, Lee KE, Hwang W, Kim IJ, Choi SH, Kim KS. 2008. Nonribosomal peptide synthase is responsible for the biosynthesis of siderophore in Vibrio vulnificus MO6-24/O. J Microbiol Biotechnol 18:35-42.
30. Litwin CM, Rayback TW, Skinner J. 1996. Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect Immun 64:2834-2838.
31. Webster AC, Litwin CM. 2000. Cloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor. Infect Immun 68:526-534.
32. Kim HY, Ayrapetyan M, Oliver JD. 2014. Survival of Vibrio vulnificus genotypes in male and female serum, and production of siderophores in human serum and seawater. Foodborne Pathog Dis 11:119-125.
33. Litwin CM, Byrne BL. 1998. Cloning and characterization of an outer membrane protein of Vibrio vulnificus required for heme utilization: regulation of expression and determination of the gene sequence. Infect Immun 66:3134-3141.
34. Kim CM, Park RY, Park JH, Sun HY, Bai YH, Ryu PY, Kim SY, Rhee JH, Shin SH. 2006. Vibrio vulnificus vulnibactin, but not metalloprotease VvpE, is essentially required for iron-uptake from human holotransferrin. Biol Pharm Bull 29:911-918.
35. Miyoshi S, Shinoda S. 1992. Activation mechanism of human Hageman factor-plasma kallikrein-kinin system by Vibrio vulnificus metalloprotease. FEBS Lett 308:315-319.
36. Okujo N, Akiyama T, Miyoshi S, Shinoda S, Yamamoto S. 1996. Involvement of vulnibactin and exocellular protease in utilization of transferrin- and lactoferrin-bound iron by Vibrio vulnificus. Microbiol Immunol 40:595-598.
37. Shao CP, Hor LI. 2000. Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Infect Immun 68:3569-3573.
38. Fan JJ, Shao CP, Ho YC, Yu CK, Hor LI. 2001. Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infect Immun 69:5943-5948.
39. Park JW, Ma SN, Song ES, Song CH, Chae MR, Park BH, Rho RW, Park SD, Kim HR. 1996. Pulmonary damage by Vibrio vulnificus cytolysin. Infect Immun 64:2873-2876.
40. Kwon KB, Yang JY, Ryu DG, Rho HW, Kim JS, Park JW, Kim HR, Park BH. 2001. Vibrio vulnificus cytolysin induces superoxide anion-initiated apoptotic signaling pathway in human ECV304 cells. J Biol Chem 276:47518-47523.
41. Lee SE, Ryu PY, Kim SY, Kim YR, Koh JT, Kim OJ, Chung SS, Choy HE, Rhee JH. 2004. Production of Vibrio vulnificus hemolysin in vivo and its pathogenic significance. Biochem Biophys Res Commun 324:86-91.
42. Bassinet L, Fitting C, Housset B, Cavaillon JM, Guiso N. 2004. Bordetella pertussis adenylate cyclase-hemolysin induces interleukin-6 secretion by human tracheal epithelial cells. Infect Immun 72:5530-5533.
43. Menestrina G, Moser C, Pellet S, Welch R. 1994. Pore-formation by Escherichia coli hemolysin (HlyA) and other members of the RTX toxins family. Toxicology 87:249-267.
44. Satchell KJ. 2007. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 75:5079-5084.
45. Baumann U, Wu S, Flaherty KM, McKay DB. 1993. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 12:3357-3364.
46. Lee JH, Kim MW, Kim BS, Kim SM, Lee BC, Kim TS, Choi SH. 2007. Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 45:146-152.
47. Kim YR, Lee SE, Kook H, Yeom JA, Na HS, Kim SY, Chung SS, Choy HE, Rhee JH. 2008. Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol 10:848-862.
48. Stanley P, Koronakis V, Hughes C. 1998. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 62:309-333.
49. Boardman BK, Satchell KJ. 2004. Vibrio cholerae strains with mutations in an atypical type I secretion system accumulate RTX toxin intracellularly. J Bacteriol 186:8137-8143.
50. Lee BC, Lee JH, Kim MW, Kim BS, Oh MH, Kim KS, Kim TS, Choi SH. 2008. Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 76:1509-1517.
51. Lo HR, Lin JH, Chen YH, Chen CL, Shao CP, Lai YC, Hor LI. 2011. RTX toxin enhances the survival of Vibrio vulnificus during infection by protecting the organism from phagocytosis. J Infect Dis 203:1866-1874.
52. Lee Ny. 2000. Nucleotide sequencing of phospholipase gene in Vibrio vulnificus and isolation and characterization of mutants deficient in phospholipase. National Cheng Kung University, Tainan, Taiwan.
53. Cordone A, Lucchini S, De Felice M, Ricca E. 2011. Direct and indirect control of Lrp on LEE pathogenicity genes of Citrobacter rodentium. FEMS Microbiol Lett 325:64-70.
54. Cui Y, Wang Q, Stormo GD, Calvo JM. 1995. A consensus sequence for binding of Lrp to DNA. J Bacteriol 177:4872-4880.
55. Yokoyama K, Ishijima SA, Clowney L, Koike H, Aramaki H, Tanaka C, Makino K, Suzuki M. 2006. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors. FEMS Microbiol Rev 30:89-108.
56. Baek CH, Wang S, Roland KL, Curtiss R, 3rd. 2009. Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J Bacteriol 191:1278-1292.
57. Nakanishi N, Tashiro K, Kuhara S, Hayashi T, Sugimoto N, Tobe T. 2009. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 155:521-530.
58. Jeong HS, Rhee JE, Lee JH, Choi HK, Kim DI, Lee MH, Park SJ, Choi SH. 2003. Identification of Vibrio vulnificus lrp and its influence on survival under various stresses. J Microbiol Biotechnol 13:159-163.
59. Rhee JE, Kim KS, Choi SH. 2008. Activation of the Vibrio vulnificus cadBA Operon by leucine-responsive regulatory protein is mediated by CadC. J Microbiol Biotechnol 18:1755-1761.
60. Alice AF, Crosa JH. 2012. The TonB3 system in the human pathogen Vibrio vulnificus is under the control of the global regulators Lrp and cyclic AMP receptor protein. J Bacteriol 194:1897-1911.
61. Gulig PA, Tucker MS, Thiaville PC, Joseph JL, Brown RN. 2009. USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus. Appl Environ Microbiol 75:4936-4949.
62. Miliotis MD. 1991. Acridine orange stain for determining intracellular enteropathogens in HeLa cells. J Clin Microbiol 29:830-831.
63. Chen YH. 2010. Role of Vibrio vulnificus RTX toxin in antiphagocytosis. National Cheng Kung University, Tainan, Taiwan.
64. Byeon SE, Yi YS, Oh J, Yoo BC, Hong S, Cho JY. 2012. The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012:512926.
65. Kim JY, Lee YG, Kim MY, Byeon SE, Rhee MH, Park J, Katz DR, Chain BM, Cho JY. 2010. Src-mediated regulation of inflammatory responses by actin polymerization. Biochem Pharmacol 79:431-443.
66. Chen CL. 2014. Studies on the mechanism of Vibrio vulnificus MARTX-mediated antiphagocytosis in macrophages. National Cheng Kung University, Tainan, Taiwan.
67. Hor LI, Chang YK, Chang CC, Lei HY, Ou JT. 2000. Mechanism of high susceptibility of iron-overloaded mouse to Vibrio vulnificus infection. Microbiol Immunol 44:871-878.
68. Okujo N, Saito M, Yamamoto S, Yoshida T, Miyoshi S, Shinoda S. 1994. Structure of vulnibactin, a new polyamine-containing siderophore from Vibrio vulnificus. Biometals 7:109-116.
69. Pajuelo D, Lee CT, Roig FJ, Lemos ML, Hor LI, Amaro C. 2014. Host-nonspecific iron acquisition systems and virulence in the zoonotic serovar of Vibrio vulnificus. Infect Immun 82:731-744.
70. Draper GC, McLennan N, Begg K, Masters M, Donachie WD. 1998. Only the N-terminal domain of FtsK functions in cell division. J Bacteriol 180:4621-4627.
71. Tani TH, Khodursky A, Blumenthal RM, Brown PO, Matthews RG. 2002. Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci U S A 99:13471-13476.
72. Shao CP, Lo HR, Lin JH, Hor LI. 2011. Regulation of cytotoxicity by quorum-sensing signaling in Vibrio vulnificus is mediated by SmcR, a repressor of hlyU. J Bacteriol 193:2557-2565.
73. Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557-580.
74. Yanisch-Perron C, Vieira J, Messing J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103-119.