簡易檢索 / 詳目顯示

研究生: 沈睿煥
Shen, Jui-Huan
論文名稱: 利用聚磷酸鋰包覆之二氧化矽粒子提高鋰離子電池性能及安全性
Improving lithium-ion battery performance and safety by using lithium polyphosphate-coated silicon dioxide particles
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 169
中文關鍵詞: 複合塗層阻燃性質鋰金屬電池鋰離子遷移數反應效率
外文關鍵詞: composite coating, flame retardancy, lithium metal batteries, lithium-ion transference number, reaction efficiency
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在提升鋰金屬電池的安全性與鋰離子傳輸效率,提出以聚磷酸鋰(lithium polyphosphate, LPP)包覆二氧化矽(SiO₂)粒子所構成之複合功能性塗層材料(SiO₂@LPP),應用於隔離膜表面。LPP具偏負電性,可選擇吸引鋰離子並具備阻燃性;SiO₂則提供機械支撐與熱穩定性。由物理吸附製備之SiO₂@LPP塗層能結合上述特性,期能強化電池整體安全性與電化學性能。
    材料特性方面,透過SEM、EDS、DLS與XPS確認LPP均勻包覆SiO₂顆粒之形貌與元素分布,接觸角測試亦驗證塗層可提升對極性電解液之潤濕性。在高溫安全性方面,SiO₂@LPP塗層可減緩隔離膜形變,且LPP於高溫下裂解可捕捉氫自由基,縮短燃燒時間與抑制火焰蔓延;SiO₂則作為高機械強度之不可燃隔離塗層降低高溫下隔離膜形變量,並減少氧氣與電解液於燃燒過程中的接觸,進一步避免燃燒。
    電化學性能方面,塗層提升濕潤性使離子導電度上升。拉曼分析顯示,LPP偏負電荷可與溶劑爭搶鋰離子,始界面鋰離子濃度上升而加速鋰離子擴散,促進均勻沉積並抑制枝晶生成。靜置阻抗與循環測試亦顯示,負電表面可能藉由排斥陰離子,降低鈍化層生成,維持較低的電荷轉移阻抗並增進界面穩定性。此外,交換電流密度與鋰對稱電池測試結果顯示,在高電流密度下,SiO₂@LPP可承受更高電流密度的沉積剝離並擁有較高界面反應效率。
    綜上,SiO₂@LPP複合塗層兼具機械強度、阻燃性與鋰離子選擇性引導能力,可有效改善高溫形變、抑制燃燒、提升界面穩定性與充放電效率,展現鋰金屬電池系統於高安全性與高效能應用的潛力,為未來高電流密度儲能系統提供材料設計依據。

    This study aims to enhance the safety and lithium-ion transport efficiency of lithium metal batteries by proposing a composite functional coating material (SiO₂@LPP), consisting of lithium polyphosphate (LPP) coated on silicon dioxide (SiO₂) particles, applied to the surface of battery separators. LPP carries partial negative charges, allowing for selective attraction of lithium ions and exhibiting excellent flame-retardant properties, while SiO₂ provides mechanical support and thermal stability. The physically adsorbed SiO₂@LPP coating integrates these features to improve overall battery safety and electrochemical performance.
    In terms of material characterization, SEM, EDS, DLS, and XPS analyses confirm the uniform coating morphology and elemental distribution of LPP on SiO₂ particles. Contact angle measurements further verify that the coating enhances wettability toward polar electrolytes. Regarding thermal safety, the SiO₂@LPP coating mitigates separator deformation under high temperatures. LPP decomposes at elevated temperatures to capture hydrogen radicals, thereby shortening combustion duration and suppressing flame propagation. Meanwhile, the high mechanical strength and nonflammable nature of SiO₂ helps reduce separator deformation and minimizes contact between oxygen and electrolyte during combustion, further preventing ignition.
    Electrochemically, improved wettability from the coating increases ionic conductivity. Raman spectroscopy reveals that the negatively charged LPP competes with solvents for lithium-ion coordination, enriching Li⁺ concentration at the interface and accelerating Li⁺ diffusion. This promotes uniform deposition and suppresses dendrite formation. Static impedance and cycling tests indicate that the negatively charged surface may repel anions, reduce passivation layer formation, maintain low charge transfer resistance, and enhance interfacial stability. Additionally, results from exchange current density calculations and lithium symmetric cell testing show that SiO₂@LPP enables more efficient interfacial reactions and supports stable stripping/plating behavior even at high current densities.
    In summary, the SiO₂@LPP composite coating provides mechanical strength, flame retardancy, and lithium-ion selectivity, effectively addressing separator deformation, combustion, interfacial instability, and inefficient charge/discharge at high currents. This demonstrates its potential for safe and high-performance lithium metal battery systems and offers a valuable material design strategy for future high-current-density energy storage applications.

    摘要 I 目錄 II 表目錄 XXII 圖目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 鋰電池發展簡介 3 1.3 研究動機 7 第二章 文獻回顧 9 2.1 鋰電池運作原理 9 2.2 正極材料 12 2.2.1 鋰鈷氧化物正極材料(LiCoO2) 13 2.2.2 鋰鎳鈷錳正極材料(LiNiCoMnO2) 15 2.2.3 磷酸鋰鐵正極材料(LiFePO4) 16 2.3 負極材料 18 2.4 黏著劑 21 2.5 電解質 24 2.6 鋰電池的安全性問題及常見的阻燃機制 26 2.6.1 磷酸鹽類阻燃添加劑 29 2.6.2 鹵素阻燃添加劑 32 2.6.3 複合阻燃添加劑 33 2.7 隔離膜 34 第三章 實驗 37 3.1 材料 37 3.2 儀器 38 3.3 樣品製備 39 3.3.1 聚磷酸鋰合成 39 3.3.2 聚磷酸鋰包覆二氧化矽實心球之複合物配製 39 3.3.3 複合物塗佈隔離膜 41 3.3.4 磷酸鋰鐵正極片之製備 43 3.3.5 鈕扣型電池組裝 43 3.4 實驗儀器及特徵分析 44 3.4.1 超音波震盪及裝置 44 3.4.2 X射線光電子能譜儀 45 3.4.3 動態光散射法 47 3.4.4 穿透式電子顯微鏡 49 3.4.5 掃描式電子顯微鏡 51 3.4.6 能量分散X光譜儀 54 3.4.7 鋰離子沉積分析 56 3.4.8 接觸角分析儀 56 3.4.9 熱穩定分析 58 3.4.10 自熄實驗 59 3.4.11 拉曼光譜儀 59 3.5 電化學分析 61 3.5.1 電池效能測試 62 3.5.2 電化學阻抗頻譜法 62 3.5.3 對稱鋰金屬靜置阻抗測試 65 3.5.4 離子傳導度測量 66 3.5.5 鋰離子遷移數測量 67 3.5.6 對稱鋰金屬變電流循環充電測試 68 3.5.7 對稱鋰金屬同電流循環充電測試 69 3.5.8 交換電流密度測試 69 3.5.9 循環伏安法 71 第四章 結果與討論 73 4.1 材料鑑定 73 4.1.1 Lithium polyphosphate之XPS分析 73 4.1.2 SiO2@LPP之DLS測試 76 4.1.3 SiO2@LPP之TEM測試 78 4.1.4 SiO2@LPP之EDS測試 79 4.1.5 塗佈後隔離膜之SEM測試 81 4.2 隔離膜之物性分析 82 4.2.1 接觸角測試 82 4.2.2 熱穩定性測試 85 4.2.3 阻燃性質測試 88 4.3 電池充放電測試 93 4.4 電解質性質變化分析 99 4.4.1 離子傳導度測試 99 4.4.2 鋰離子遷移數測試 102 4.4.3 電解質拉曼測試 106 4.5 鋰金屬陽極變化分析 109 4.5.1 對稱鋰金屬電池變電流充放電測試 109 4.5.2 對稱鋰金屬電池同電流循環充放電測試 113 4.5.3 對稱鋰金屬靜置阻抗測試 117 4.5.4 鋰離子沉積分析 120 4.5.5 交換電流密度測試 122 4.5.6 鋰對稱電池之循環伏安法可逆性測試 126 第五章 結論 129 第六章 參考文獻 132

    Arfwedson, A. (1818). Untersuchung einiger bei der Eisen-Grube von Utö vorkommenden Fossilien und von einem darin gefundenen neuen feuerfesten Alkali. J. Chem. Phys, 22, 93-117.
    Armand, M., & Tarascon, J.-M. (2008). Building better batteries. nature, 451(7179), 652-657.
    Arora, P., & Zhang, Z. (2004). Battery separators. Chemical reviews, 104(10), 4419-4462.
    Berzelius, J. J. (1817). Ein neues mineralisches Alkali und ein neues Metall. J. Chem. Phys, 21, 44-48.
    Bhattacharjee, S. (2016). DLS and zeta potential–what they are and what they are not? Journal of controlled release, 235, 337-351.
    Bouteau, G., Van-Nhien, A. N., Sliwa, M., Sergent, N., Lepretre, J.-C., Gachot, G., Sagaidak, I., & Sauvage, F. (2019). Effect of standard light illumination on electrolyte’s stability of lithium-ion batteries based on ethylene and di-methyl carbonates. Scientific Reports, 9(1), 135.
    Chan, C. K., Peng, H., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A., & Cui, Y. (2008). High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology, 3(1), 31-35.
    Chen, S.-P., Lv, D., Chen, J., Zhang, Y.-H., & Shi, F.-N. (2022). Review on defects and modification methods of LiFePO4 cathode material for lithium-ion batteries. Energy & Fuels, 36(3), 1232-1251.
    Chen, Z., Wang, J., Chao, D., Baikie, T., Bai, L., Chen, S., Zhao, Y., Sum, T. C., Lin, J., & Shen, Z. (2016). Hierarchical porous LiNi1/3Co1/3Mn1/3O2 nano-/micro spherical cathode material: minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance. Scientific reports, 6(1), 25771.
    Cheng, Q., Yuge, R., Nakahara, K., Tamura, N., & Miyamoto, S. (2015). KOH etched graphite for fast chargeable lithium-ion batteries. Journal of Power Sources, 284, 258-263.
    Cheng, X.-B., Hou, T.-Z., Zhang, R., Peng, H.-J., Zhao, C.-Z., Huang, J.-Q., & Zhang, Q. (2016). Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater, 28(15), 2888-2895.
    Choi, J. W., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1(4), 1-16.
    Chou, S.-L., Pan, Y., Wang, J.-Z., Liu, H.-K., & Dou, S.-X. (2014). Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 16(38), 20347-20359.
    Chusuei, C. C., Goodman, D. W., Van Stipdonk, M. J., Justes, D. R., & Schweikert, E. A. (1999). Calcium phosphate phase identification using XPS and time-of-flight cluster SIMS. Analytical chemistry, 71(1), 149-153.
    D’Andrada, J. (1800). Des caractères et des propriétés de plusieurs nouveaux minéraux de Suède et de Norvège, avec quelques observations chimiques faites sur ces substances. Journal de Chimie et de Physique, 51, 239-245.
    Deng, K., Zeng, Q., Wang, D., Liu, Z., Wang, G., Qiu, Z., Zhang, Y., Xiao, M., & Meng, Y. (2020). Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Materials, 32, 425-447.
    Dietzek, B., Cialla, D., Schmitt, M., & Popp, J. (2010). Introduction to the fundamentals of Raman spectroscopy. In Confocal Raman Microscopy (pp. 21-42). Springer.
    Diplas, S., Prytz, Ø., Karlsen, O., Watts, J., & Taftø, J. (2007). A quantitative study of valence electron transfer in the skutterudite compoundCoP3 by combining x-ray induced Auger and photoelectron spectroscopy. Journal of Physics: Condensed Matter, 19(24), 246216.
    Dornbusch, D. A., Hilton, R., Gordon, M. J., & Suppes, G. J. (2013). Effects of sonication on eis results for zinc alkaline batteries. ECS Electrochemistry Letters, 2(9), A89.
    Fan, X., & Wang, C. (2021). High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chemical Society Reviews, 50(18), 10486-10566.
    Feyzi, E., MR, A. K., Li, X., Deng, S., Nanda, J., & Zaghib, K. (2024). A comprehensive review of silicon anodes for high-energy lithium-ion batteries: Challenges, latest developments, and perspectives. Next Energy, 5, 100176.
    Glorieux, B., Berjoan, R., Matecki, M., Kammouni, A., & Perarnau, D. (2007). XPS analyses of lanthanides phosphates. Applied surface science, 253(6), 3349-3359.
    Goodenough, J. B., Abruña, H. D., & Buchanan, M. V. (2007). Basic research needs for electrical energy storage. report of the basic energy sciences workshop on electrical energy storage, april 2-4, 2007.
    Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P., & Capiglia, C. (2014). Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 257, 421-443.
    Guerfi, A., Kaneko, M., Petitclerc, M., Mori, M., & Zaghib, K. (2007). LiFePO4 water-soluble binder electrode for Li-ion batteries. Journal of Power Sources, 163(2), 1047-1052.
    Hodoroaba, V.-D. (2020). Energy-dispersive X-ray spectroscopy (EDS). In Characterization of nanoparticles (pp. 397-417). Elsevier.
    Hou, J., Wang, L., Feng, X., Terada, J., Lu, L., Yamazaki, S., Su, A., Kuwajima, Y., Chen, Y., & Hidaka, T. (2023). Thermal runaway of lithium‐ion batteries employing flame‐retardant fluorinated electrolytes. Energy & Environmental Materials, 6(1), e12297.
    Hu, Y., Wang, C., Wu, Y., Zhao, Q., Li, A., Zhang, Q., Liu, J., Jin, Y., & Wang, H. (2023). Negatively charged separators facilitating lithium-ion conduction to stabilize lithium metal anodes. Journal of Materials Chemistry A, 11(23), 12052-12061.
    Hüfner, S. (2013). Photoelectron spectroscopy: principles and applications. Springer Science & Business Media.
    Jayasooriya, U. A., & Jenkins, R. D. (2002). Introduction to Raman spectroscopy. In An Introduction to Laser Spectroscopy: Second Edition (pp. 77-104). Springer.
    Jeon, H., Yeon, D., Lee, T., Park, J., Ryou, M.-H., & Lee, Y. M. (2016). A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. Journal of Power Sources, 315, 161-168.
    Julien, C. M., Mauger, A., Zaghib, K., & Groult, H. (2014). Comparative issues of cathode materials for Li-ion batteries. Inorganics, 2(1), 132-154.
    Kong, L., Wang, Y., Yu, H., Liu, B., Qi, S., Wu, D., Zhong, W.-H., Tian, G., & Wang, J. (2018). In situ armoring: a robust, high-wettability, and fire-resistant hybrid separator for advanced and safe batteries. ACS Applied Materials & Interfaces, 11(3), 2978-2988.
    Krasnyansky, M. (2008). Studies of fundamental physical–chemical mechanisms and processes of flame extinguishing by powder aerosols. Fire and Materials: An International Journal, 32(1), 27-47.
    Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. Advances in colloid and interface science, 81(3), 167-249.
    Lee, H., Yang, S., Kim, S., Song, J., Park, J., Doh, C.-H., Ha, Y.-C., Kwon, T.-S., & Lee, Y. M. (2022). Understanding the effects of diffusion coefficient and exchange current density on the electrochemical model of lithium-ion batteries. Current Opinion in Electrochemistry, 34, 100986.
    Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., & Zhang, X. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 7(12), 3857-3886.
    Lewin, M., & Weil, E. D. (2001). Mechanisms and modes of action in flame retardancy of polymers. Fire retardant materials, 1, 31-68.
    Lewis, G. N., & Keyes, F. G. (1913). The Potential of the Lithium Electrode. Journal of the American Chemical Society, 35(4), 340-344.
    Li, H., Cormier, M., Zhang, N., Inglis, J., Li, J., & Dahn, J. R. (2019). Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? Journal of The Electrochemical Society, 166(4), A429.
    Li, W., Erickson, E. M., & Manthiram, A. (2020). High-nickel layered oxide cathodes for lithium-based automotive batteries. Nature Energy, 5(1), 26-34.
    Li, W., Qian, J., Zhao, T., Ye, Y., Xing, Y., Huang, Y., Wei, L., Zhang, N., Chen, N., & Li, L. (2019). Boosting high‐rate Li–S batteries by an MOF‐derived catalytic electrode with a layer‐by‐layer structure. Advanced Science, 6(16), 1802362.
    Li, X., Lv, M., Tian, Y., Gao, L., Liu, T., Zhou, Q., Xu, Y., Shen, L., Shi, W., & Li, X. (2021). Negatively charged polymeric interphase for regulated uniform lithium-ion transport in stable lithium metal batteries. Nano Energy, 87, 106214.
    Liao, C., Mu, X., Han, L., Li, Z., Zhu, Y., Lu, J., Wang, H., Song, L., Kan, Y., & Hu, Y. (2022). A flame-retardant, high ionic-conductivity and eco-friendly separator prepared by papermaking method for high-performance and superior safety lithium-ion batteries. Energy Storage Materials, 48, 123-132.
    Lingappan, N., Lee, W., Passerini, S., & Pecht, M. (2023). A comprehensive review of separator membranes in lithium-ion batteries. Renewable and Sustainable Energy Reviews, 187, 113726.
    Liu, B. W., Zhao, H. B., & Wang, Y. Z. (2022). Advanced flame‐retardant methods for polymeric materials. Advanced Materials, 34(46), 2107905.
    Liu, G. (2010). Ammonium Polyphosphate-An Overview with Respect to its Properties, Environmental and Toxicological Aspects. 2010 4th International Conference on Bioinformatics and Biomedical Engineering,
    Liu, H., Cheng, X.-B., Huang, J.-Q., Yuan, H., Lu, Y., Yan, C., Zhu, G.-L., Xu, R., Zhao, C.-Z., & Hou, L.-P. (2020). Controlling dendrite growth in solid-state electrolytes. ACS Energy Letters, 5(3), 833-843.
    Liu, Y., Xu, X., Sadd, M., Kapitanova, O. O., Krivchenko, V. A., Ban, J., Wang, J., Jiao, X., Song, Z., & Song, J. (2021). Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Advanced Science, 8(5), 2003301.
    Lu, Z., MacNeil, D., & Dahn, J. (2001). Layered cathode materials Li [Ni x Li (1/3− 2x/3) Mn (2/3− x/3)] O 2 for lithium-ion batteries. Electrochemical and Solid-State Letters, 4(11), A191.
    Lux, S., Lucas, I., Pollak, E., Passerini, S., Winter, M., & Kostecki, R. (2012). The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochemistry Communications, 14(1), 47-50.
    Lux, S., Schappacher, F., Balducci, A., Passerini, S., & Winter, M. (2010). Low cost, environmentally benign binders for lithium-ion batteries. Journal of The Electrochemical Society, 157(3), A320.
    Lyu, Y., Wu, X., Wang, K., Feng, Z., Cheng, T., Liu, Y., Wang, M., Chen, R., Xu, L., & Zhou, J. (2021). An overview on the advances of LiCoO2 cathodes for lithium‐ion batteries. Advanced Energy Materials, 11(2), 2000982.
    Ma, C., Cui, W., Liu, X., Ding, Y., & Wang, Y. (2022). In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InfoMat, 4(2), e12232.
    Ma, F., Srinivas, K., Zhang, X., Zhang, Z., Wu, Y., Liu, D., Zhang, W., Wu, Q., & Chen, Y. (2022). Mo2N quantum dots decorated N‐doped graphene nanosheets as dual‐functional interlayer for dendrite‐free and shuttle‐free lithium‐sulfur batteries. Advanced Functional Materials, 32(40), 2206113.
    Ma, Y., Ma, J., & Cui, G. (2019). Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Materials, 20, 146-175.
    Manthiram, A. (2020). A reflection on lithium-ion battery cathode chemistry. Nature communications, 11(1), 1550.
    Manthiram, A., Yu, X., & Wang, S. (2017). Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2(4), 1-16.
    Misono, T. (2019). Dynamic light scattering (DLS). Measurement techniques and practices of colloid and interface phenomena, 65-69.
    Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789.
    Mu, X., Li, X., Liao, C., Yu, H., Jin, Y., Yu, B., Han, L., Chen, L., Kan, Y., & Song, L. (2022). Phosphorus‐fixed stable interfacial nonflammable gel polymer electrolyte for safe flexible lithium‐ion batteries. Advanced Functional Materials, 32(35), 2203006.
    Newbury*, D. E., & Ritchie, N. W. (2013). Is scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) quantitative? Scanning, 35(3), 141-168.
    Nunes-Pereira, J., Costa, C., & Lanceros-Méndez, S. (2015). Polymer composites and blends for battery separators: state of the art, challenges and future trends. Journal of Power Sources, 281, 378-398.
    Nzabahimana, J., Liu, Z., Guo, S., Wang, L., & Hu, X. (2020). Top‐down synthesis of silicon/carbon composite anode materials for lithium‐ion batteries: mechanical milling and etching. ChemSusChem, 13(8), 1923-1946.
    Ohzuku, T., & Makimura, Y. (2001). Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry letters, 30(7), 642-643.
    Ozawa, K. (1994). Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics, 69(3-4), 212-221.
    Park, J., Ha, S., Jung, J. Y., Hyun, J. H., Yu, S. H., Lim, H. K., Kim, N. D., & Yun, Y. S. (2022). Understanding the effects of interfacial lithium ion concentration on lithium metal anode. Advanced Science, 9(6), 2104145.
    Peng, L., Kong, X., Li, H., Wang, X., Shi, C., Hu, T., Liu, Y., Zhang, P., & Zhao, J. (2021). A rational design for a high‐safety lithium‐ion battery assembled with a heatproof–fireproof bifunctional separator. Advanced Functional Materials, 31(10), 2008537.
    Prasanna, K., Kim, C.-S., & Lee, C. W. (2014). Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries. Materials Chemistry and Physics, 146(3), 545-550.
    Ramasubramanian, B., Sundarrajan, S., Chellappan, V., Reddy, M., Ramakrishna, S., & Zaghib, K. (2022). Recent development in carbon-LiFePO4 cathodes for lithium-ion batteries: a mini review. Batteries, 8(10), 133.
    Roberts, A. D., Li, X., & Zhang, H. (2014). Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chemical Society Reviews, 43(13), 4341-4356.
    Scheu, C., & Kaplan, W. D. (2012). Introduction to scanning electron microscopy. In-situ electron microscopy: Applications in physics, chemistry and materials science. Weinheim, DEU: Wiley-VCH Verlag, 3-37.
    Schmitz, K. S. (2012). Introduction to dynamic light scattering by macromolecules. Elsevier.
    Šetka, M., Calavia, R., Vojkůvka, L., Llobet, E., Drbohlavová, J., & Vallejos, S. (2019). Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Scientific Reports, 9(1), 8465.
    Shiga, T., Kato, Y., Kondo, H., & Okuda, C.-a. (2017). Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries. Journal of Materials Chemistry A, 5(10), 5156-5162.
    Singh, R. (2025). Introduction to Transmission Electron Microscopy (TEM). In Transmission Electron Microscopy Sample Preparation: From Specimen to Micrograph (pp. 1-20). Springer.
    Stevie, F. A., & Donley, C. L. (2020). Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 38(6).
    Tanim, T. R., Yang, Z., Finegan, D. P., Chinnam, P. R., Lin, Y., Weddle, P. J., Bloom, I., Colclasure, A. M., Dufek, E. J., & Wen, J. (2022). A comprehensive understanding of the aging effects of extreme fast charging on high Ni NMC cathode. Advanced Energy Materials, 12(22), 2103712.
    Tarascon, J.-M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. nature, 414(6861), 359-367.
    Thackeray, M. M., David, W. I., Bruce, P. G., & Goodenough, J. B. (1983). Lithium insertion into manganese spinels. Materials Research Bulletin, 18(4), 461-472.
    Tian, X., Yi, Y., Fang, B., Yang, P., Wang, T., Liu, P., Qu, L., Li, M., & Zhang, S. (2020). Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chemistry of Materials, 32(23), 9821-9848.
    Tikekar, M. D., Choudhury, S., Tu, Z., & Archer, L. A. (2016). Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 1(9), 1-7.
    Wang, L., Wu, Z., Zou, J., Gao, P., Niu, X., Li, H., & Chen, L. (2019). Li-free cathode materials for high energy density lithium batteries. Joule, 3(9), 2086-2102.
    Wang, Q., Jiang, L., Yu, Y., & Sun, J. (2019). Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 55, 93-114.
    Wang, Q., Mao, B., Stoliarov, S. I., & Sun, J. (2019). A review of lithium ion battery failure mechanisms and fire prevention strategies. Progress in Energy and Combustion Science, 73, 95-131.
    Webster, J. W. (1839). A Manual of Chemistry: Containing the Principal Facts of the Science, in the Order in which They are Discussed and Illustrated in the Lectures at Harvard University, NE and Several Other Colleges and Medical Schools in the United States: Compiled and Arranged as a Text Book for the Use of Students, and Persons Attending Lectures on Chemistry. Marsh, Capen, Lyon and Webb.
    Whittingham, M. S. (2012). History, evolution, and future status of energy storage. Proceedings of the IEEE, 100(Special Centennial Issue), 1518-1534.
    Williams, D. B., Carter, C. B., Williams, D. B., & Carter, C. B. (2009). The transmission electron microscope. Springer.
    Wu, D., Dong, N., Wang, R., Qi, S., Liu, B., & Wu, D. (2021). In situ construction of High-safety and Non-flammable polyimide “Ceramic” Lithium-ion battery separator via SiO2 Nano-Encapsulation. Chemical Engineering Journal, 420, 129992.
    Xiao, J., Li, Q., Bi, Y., Cai, M., Dunn, B., Glossmann, T., Liu, J., Osaka, T., Sugiura, R., & Wu, B. (2020). Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 5(8), 561-568.
    Xie, J., Xu, R., & Lei, C. (2018). Uniaxial stretching induced pore nucleation and growth in row-nucleated crystalline hard-elastic polypropylene film: The effect of activation volume and stretching work. Polymer, 158, 10-17.
    Xie, Z., Wu, Z., An, X., Yue, X., Wang, J., Abudula, A., & Guan, G. (2020). Anode-free rechargeable lithium metal batteries: progress and prospects. Energy Storage Materials, 32, 386-401.
    Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 104(10), 4303-4418.
    Xu, K., Ding, M. S., Zhang, S., Allen, J. L., & Jow, T. R. (2003). Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. Physical and electrochemical properties. Journal of The Electrochemical Society, 150(2), A161.
    Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., & Zhang, J.-G. (2014). Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 7(2), 513-537.
    Yasin, G., Arif, M., Mehtab, T., Lu, X., Yu, D., Muhammad, N., Nazir, M. T., & Song, H. (2020). Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Materials, 25, 644-678.
    Yoshino, A. (2012). The birth of the lithium‐ion battery. Angewandte Chemie International Edition, 51(24), 5798-5800.
    Zhang, S., & Jow, T. (2002). Study of poly (acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries. Journal of Power Sources, 109(2), 422-426.
    Zhang, Z., Zeng, T., Qu, C., Lu, H., Jia, M., Lai, Y., & Li, J. (2012). Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochimica Acta, 80, 440-444.
    Zheng, G., Wang, C., Pei, A., Lopez, J., Shi, F., Chen, Z., Sendek, A. D., Lee, H.-W., Lu, Z., & Schneider, H. (2016). High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Letters, 1(6), 1247-1255.
    Zhi, Y., & Liu, J. (2016). Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions. Chemosphere, 144, 1224-1232.
    Zhu, M., Wu, J., Wang, Y., Song, M., Long, L., Siyal, S. H., Yang, X., & Sui, G. (2019). Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of Energy Chemistry, 37, 126-142.
    Zhu, Y., Ge, M., Ma, F., Wang, Q., Huang, P., & Lai, C. (2024). Multifunctional electrolyte additives for better metal batteries. Advanced Functional Materials, 34(5), 2301964.
    Zou, F., & Manthiram, A. (2020). A review of the design of advanced binders for high‐performance batteries. Advanced Energy Materials, 10(45), 2002508.
    Zuo, X., Zhu, J., Müller-Buschbaum, P., & Cheng, Y.-J. (2017). Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 31, 113-143.

    無法下載圖示 校內:2030-08-01公開
    校外:2030-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE