研究生: |
如芬亞 Rachmawati, Luthfiyah |
---|---|
論文名稱: |
酞菁銅覆蓋於氧化鎳奈米片狀結構自旋性質應用之研究 Study of CuPc loaded on NiO Nanosheets as Spintronic Application |
指導教授: |
蘇彥勳
Su, Yen-Hsun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 尖端材料國際碩士學位學程 International Curriculum for Advanced Materials Program |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 氧化鎳 、酞菁銅 、自旋電子 、磁域釘扎 |
外文關鍵詞: | Nickel Oxide, Copper Phthalocyanine, Spintronic, Domain Wall Pinning |
相關次數: | 點閱:109 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合材料酞菁銅和氧化鎳在太陽能水分解中有不佳的表現,可能歸因於低活性與不合適的能帶位置,在本研究論文中,我們應用自旋極化試圖解決此問題。反鐵磁性特性酞菁銅和氧化鎳有良好的交換偏壓效應,可有效應用於自旋極化裝置中。在此,我們證明了酞菁銅和氧化鎳在自旋注入上於水分解有較高的活性與形成有效磁區。我們將氧化鎳上的磁區結合電學量測與微磁學模擬,在水分解實驗中,應用磁測量和電子自旋極化量測,可以確定存在表面缺陷的Ni3+磁矩與自旋取向。氧化鎳反鐵磁性中磁區引起自旋極化現象,也導致空間反轉對稱破壞。此外,隨著酞菁銅複合氧化鎳中磁異向性和DMI的增加,磁區尺寸也隨之變較小,且有最高的光電流密度22.53A/m2。在水分解系統中,同時,我們利用光學路徑結合磁區應用去做量子電腦計算去實現在未來自旋電子裝置的方法中。
A combination of CuPc and NiO for solar water splitting is not optimal. It can be caused by lower activity and not a proper band gap position. To solve this problem spin polarization is applied. Antiferromagnetic CuPc and NiO show great exchange bias effects that able to be used in spintronic devices. Here we demonstrate the conversion of the circular polarization of laser into higher activity in water splitting and creating a domain wall on NiO and CuPc. We combine electrical measurements and micromagnetic simulation of domain wall on roughness NiO. The presence surface defect of Ni3+ ion count net magnetization and spin-reorientation which established by the magnetic measurement and electric spin polarization in water splitting. The spin polarization of NiO also induced by the presence of the antiferromagnetic domain walls, which led to spatial inversion symmetry breaking. Moreover, increasing magnetic anisotropy and DMI at CuPc/NiO, domain wall appear to subsequently evolve into a smaller size that obtained 22.53 A/m2 as the highest current density in the water-splitting system. Furthermore, we also made quantum computing for domain wall applications with the optical circuit should be a way to realize future spintronic devices.
1 Jiang, H. et al. Hierarchical ZnO nanorod/ZnFe2O4 nanosheet core/shell nanoarray decorated with PbS quantum dots for efficient photoelectrochemical water splitting. Journal of Alloys and Compounds 828, 154449 (2020).
2 Chumley, H. & Hewlings, S. The effects of elevated atmospheric carbon dioxide [CO2] on micronutrient concentration, specifically iron (Fe) and zinc (Zn) in rice; a systematic review. Journal of Plant Nutrition 43, 1571-1578 (2020).
3 Pérez, M. & Rhode, C. Carbon Pricing: International Comparison. ifo DICE Report 18, 49-59 (2020).
4 Namar, M. M. & Jahanian, O. Energy and exergy analysis of a hydrogen-fueled HCCI engine. Journal of Thermal Analysis and Calorimetry 137, 205-215 (2019).
5 Chemelewski, W. D., Lee, H. C., Lin, J. F., Bard, A. J. & Mullins, C. B. Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting. J. Am. Chem. Soc. 136, 2843-2850 (2014).
6 Moma, J. & Baloyi, J. in Photocatalysts-Applications and Attributes (IntechOpen, 2018).
7 Sarwan, B., Acharya, A. D. & Pare, B. Visible light-driven photocatalytic degradation and mineralization of the malachite green dye in a slurry photoreactor. Particulate Science and Technology 35, 472-478 (2017).
8 Kurtoglu, M. E., Longenbach, T. & Gogotsi, Y. Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. International Journal of Applied Glass Science 2, 108-116 (2011).
9 Zhang, W., Gao, W., Zhang, X., Li, Z. & Lu, G. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future. Appl. Surf. Sci. 434, 643-668 (2018).
10 van Gog, H. & van Huis, M. A. Structural and Electronic Properties of Frenkel and Schottky Defects at the MgO{100} Surface: Spin Polarization, Mid-Band Gap States, and Charge Trapping at Vacancy Sites. The Journal of Physical Chemistry C 123, 14408-14420 (2019).
11 Ovcharenko, R., Voloshina, E. & Sauer, J. Water adsorption and O- defect formation on Fe2O3(0001) surfaces. Phys. Chem. Chem. Phys. 18, 25560-25568 (2016).
12 Wu, J., Mao, S., Ye, Z.-G., Xie, Z. & Zheng, L. Room-Temperature Weak Ferromagnetism Induced by Point Defects in α-Fe2O3. ACS Applied Materials & Interfaces 2, 1561-1564 (2010).
13 Aschauer, U., Vonrüti, N. & Spaldin, N. A. Effect of epitaxial strain on cation and anion vacancy formation in MnO. Phys. Rev. B 92, 054103 (2015).
14 Madhu, G., Maniammal, K. & Biju, V. Defect induced ferromagnetic interaction in nanostructured nickel oxide with core–shell magnetic structure: the role of Ni2+ and O2− vacancies. Phys. Chem. Chem. Phys. 18, 12135-12148 (2016).
15 Aifer, E. H., Goldberg, B. B. & Broido, D. A. Evidence of Skyrmion excitations about nu=1 in n-modulation-doped single quantum wells by interband optical transmission. Phys. Rev. Lett. 76, 680-683 (1996).
16 Hervé, M. et al. Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy. Nat. Commun. 9, 1015 (2018).
17 Motahari, F., Mozdianfard, M. R., Soofivand, F. & Salavati-Niasari, M. NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 4, 27654-27660 (2014).
18 D'Amario, L., Fohlinger, J., Boschloo, G. & Hammarstrom, L. Unveiling hole trapping and surface dynamics of NiO nanoparticles. Chem. Sci. 9, 223-230 (2018).
19 Li, R.-s. et al. A full potential all-electron calculation on electronic structure of NiO. Chinese Journal of Physics 56, 2829-2836 (2018).
20 Steinebach, H., Kannan, S., Rieth, L. & Solzbacher, F. H-2 gas sensor performance of NiO at high temperatures in gas mixtures. Sens. Actuator B-Chem. 151, 162-168 (2010).
21 Luo, G.-G., Li, X.-C. & Wang, J.-H. Visible Light-Driven Hydrogen Evolution from Aqueous Solution in a Noble-Metal-Free System Catalyzed by a Cobalt Phthalocyanine. ChemistrySelect 1, 425-429 (2016).
22 Wang, H. et al. Ultralong Copper Phthalocyanine Nanowires with New Crystal Structure and Broad Optical Absorption. ACS Nano 4, 3921-3926 (2010).
23 Warner, M. et al. Potential for spin-based information processing in a thin-film molecular semiconductor. Nature 503, 504-+ (2013).
24 Fukami, S., Zhang, C. L., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat. Mater. 15, 535-+ (2016).
25 Brandão, J. et al. Observation of magnetic skyrmions in unpatterned symmetric multilayers at room temperature and zero magnetic field. Sci Rep 9, 4144 (2019).
26 Fujishima, A. & Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37-38 (1972).
27 Jeong, S. Y., Song, J. & Lee, S. Photoelectrochemical Device Designs toward Practical Solar Water Splitting: A Review on the Recent Progress of BiVO4 and BiFeO3 Photoanodes. Appl. Sci.-Basel 8, 16 (2018).
28 Abdullah, H., Gultom, N. S. & Kuo, D. H. Depletion-Zone size control of p-type NiO/n-type Zn(O,S) nanodiodes on high-surface-area SiO2 nanoparticles as a strategy to significantly enhance hydrogen evolution rate. Appl. Catal. B-Environ. 261, 12 (2020).
29 Jandi, M., Mishra, S. B., Nxumalo, E. N., Mhlanga, S. D. & Mishra, A. K. Smart pathways for the photocatalytic degradation of sulfamethoxazole drug using F-Pd co-doped TiO2 nanocomposites. Appl. Catal. B-Environ. 267, 12 (2020).
30 Habibi-Yangjeh, A., Pirhashemi, M. & Ghosh, S. ZnO/ZnBi2O4 nanocomposites with p-n heterojunction as durable visible-light-activated photocatalysts for efficient removal of organic pollutants. J. Alloy. Compd. 826, 11 (2020).
31 Zhu, S. S. & Wang, D. W. Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Adv. Energy Mater. 7, 24 (2017).
32 Su, J., Li, G.-D., Li, X.-H. & Chen, J.-S. 2D/2D Heterojunctions for Catalysis. Advanced Science 6, 1801702 (2019).
33 Curtis, L. J. Atomic Structure and Lifetimes: A Conceptual Approach. (Cambridge University Press, 2003).
34 Griffiths, D. J. & Schroeter, D. F. Introduction to Quantum Mechanics. 3 edn, (Cambridge University Press, 2018).
35 Han, W. et al. Spin injection and detection in lanthanum- and niobium-doped SrTiO3 using the Hanle technique. Nature Communications 4, 2134 (2013).
36 Manoharan, H. C. A romance with many dimensions. Nat. Nanotechnol. 5, 477-479 (2010).
37 Li, R., Yang, Y., Li, R. & Chen, Q. Experimental and Theoretical Studies on the Effects of Magnetic Fields on the Arrangement of Surface Spins and the Catalytic Activity of Pd Nanoparticles. ACS Appl. Mater. Interfaces 7, 6019-6024 (2015).
38 Li, J. et al. Enhanced Photocatalytic Performance through Magnetic Field Boosting Carrier Transport. ACS Nano 12, 3351-3359 (2018).
39 Zhang, L., Ran, J., Qiao, S.-Z. & Jaroniec, M. Characterization of semiconductor photocatalysts. Chemical Society Reviews 48, 5184-5206 (2019).
40 Lai, Y.-S. & Su, Y.-H. Photon-Induced Spintronic Polaron Channel Modulator of CeO2-x NP Thin Films Hydrogen Evolution Cells. Advanced Electronic Materials 5, 1800570 (2019).
41 Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982).
42 Gruska, J. Quantum entanglement as a new information processing resource. New Generation Computing 21, 279-295 (2003).
43 Tsujino, K., Hofmann, H. F., Takeuchi, S. & Sasaki, K. Distinguishing genuine entangled two-photon-polarization states from independently generated pairs of entangled photons. Phys. Rev. Lett. 92, 153602 (2004).
44 Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Physical Review A 57, 120 (1998).
45 Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247-255 (2000).
46 Blinowski, J. & Kacman, P. Double exchange in mixed-valency diluted magnetic semiconductors. Acta Physica Polonica-Series A General Physics 90, 731-734 (1996).
47 Harrison, W. A. Heisenberg exchange in the magnetic monoxides. Phys. Rev. B 76, 054417 (2007).
48 Jock, R. M. et al. A silicon metal-oxide-semiconductor electron spin-orbit qubit. Nature communications 9, 1-8 (2018).
49 Adcock, J. C., Vigliar, C., Santagati, R., Silverstone, J. W. & Thompson, M. G. Programmable four-photon graph states on a silicon chip. Nature Communications 10, 3528 (2019).
50 Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photonics 12, 534-539 (2018).
51 Spain, E. & Venkatanarayanan, A. in Comprehensive Materials Processing (eds Saleem Hashmi, Gilmar Ferreira Batalha, Chester J. Van Tyne, & Bekir Yilbas) 5-46 (Elsevier, 2014).
52 du Trémolet de Lacheisserie, É., Gignoux, D. & Schlenker, M. in Magnetism (eds É du Trémolet de Lacheisserie, D. Gignoux, & M. Schlenker) 79-104 (Springer New York, 2002).
53 Panigrahi, P., Araujo, C. M., Hussen, T. & Ahuja, R. Crafting ferromagnetism in Mn-doped MgO surfaces with p-type defects. Science and Technology of Advanced Materials 15, 035008 (2014).
54 Devan, R. S., Patil, R. A., Lin, J. H. & Ma, Y. R. One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications. Adv. Funct. Mater. 22, 3326-3370 (2012).
55 Manders, J. R. et al. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 23, 2993-3001 (2013).
56 Kuang, D. B., Lei, B. X., Pan, Y. P., Yu, X. Y. & Su, C. Y. Fabrication of Novel Hierarchical beta-Ni(OH)(2) and NiO Microspheres via an Easy Hydrothermal Process. J. Phys. Chem. C 113, 5508-5513 (2009).
57 Vijayakumar, S., Nagamuthu, S. & Muralidharan, G. Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route. ACS Appl. Mater. Interfaces 5, 2188-2196 (2013).
58 Deng, J., Mortazavi, M., Medhekar, N. V. & Zhe Liu, J. Band engineering of Ni1−xMgxO alloys for photocathodes of high efficiency dye-sensitized solar cells. Journal of Applied Physics 112, 123703 (2012).
59 Laudise, R. A. Hydrothermal Synthesis of Crystals. Chemical & Engineering News Archive 65, 30-43 (1987).
60 Byrappa, K. & Yoshimura, M. in Handbook of Hydrothermal Technology (eds K. Byrappa & Masahiro Yoshimura) 1-52 (William Andrew Publishing, 2001).
61 Yang, G. & Park, S. J. Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. Materials 12, 18 (2019).
62 Li, S. et al. Ultrafast Microwave Hydrothermal Synthesis of BiFeO3 Nanoplates. J. Am. Ceram. Soc. 96, 3155-3162 (2013).
63 Liao, M. S. & Scheiner, S. Electronic structure and bonding in metal phthalocyanines, Metal=Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys. 114, 9780-9791 (2001).
64 Luo, G. G., Li, X. C. & Wang, J. H. Visible Light-Driven Hydrogen Evolution from Aqueous Solution in a Noble-Metal-Free System Catalyzed by a Cobalt Phthalocyanine. ChemistrySelect 1, 425-429 (2016).
65 Wohrle, D. et al. Efficient oxidations and photooxidations with molecular oxygen using metal phthalocyanines as catalysts and photocatalysts. J. Porphyr. Phthalocyanines 8, 1020-1041 (2004).
66 Heutz, S. et al. Molecular thin films: A new type of magnetic switch. Adv. Mater. 19, 3618-+ (2007).
67 Li, Y. G. et al. Assembly of Copper Phthalocyanine on TiO2 Nanorod Arrays as Co-catalyst for Enhanced Photoelectrochemical Water Splitting. Front. Chem. 7, 11 (2019).
68 Ghimire, G. et al. Local Enhancement of Exciton Emission of Monolayer MoS2 by Copper Phthalocyanine Nanoparticles. J. Phys. Chem. C 122, 6794-6800 (2018).
69 Pieranski, P. TWO-DIMENSIONAL INTERFACIAL COLLOIDAL CRYSTALS. Phys. Rev. Lett. 45, 569-572 (1980).
70 Boker, A., He, J., Emrick, T. & Russell, T. P. Self-assembly of nanoparticles at interfaces. Soft Matter 3, 1231-1248 (2007).
71 Wu, Q. S. et al. Morphology and properties of NiO electrodes for p-DSSCs based on hydrothermal method. Appl. Surf. Sci. 276, 411-416 (2013).
72 Feidenhansl, R. SURFACE-STRUCTURE DETERMINATION BY X-RAY-DIFFRACTION. Surf. Sci. Rep. 10, 105-188 (1989).
73 Rocha, F. S., Gomes, A. J., Lunardi, C. N., Kaliaguine, S. & Patience, G. S. Experimental methods in chemical engineering: Ultraviolet visible spectroscopy-UV-Vis. Can. J. Chem. Eng. 96, 2512-2517 (2018).
74 Bubert, H. in Surface and Thin Film Analysis 6-32.
75 Choi, J. Y. et al. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration. Sci Rep 6, 36504 (2016).
76 Choi, J. Y. et al. Effect of Si on the Energy Band Gap Modulation and Performance of Silicon Indium Zinc Oxide Thin-Film Transistors. Sci Rep 7, 15392 (2017).
77 Lee, B. H. et al. Investigation on energy bandgap states of amorphous SiZnSnO thin films. Sci Rep 9, 19246 (2019).
78 Pennycook, S. J. & Jesson, D. E. HIGH-RESOLUTION Z-CONTRAST IMAGING OF CRYSTALS. Ultramicroscopy 37, 14-38 (1991).
79 Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368-+ (2019).
80 Miura, K. et al. Voltage-induced magnetization dynamics in CoFeB/MgO/CoFeB magnetic tunnel junctions. Sci Rep 7, 8 (2017).
81 Anandha Babu, G., Ravi, G., Navaneethan, M., Arivanandhan, M. & Hayakawa, Y. An investigation of flower shaped NiO nanostructures by microwave and hydrothermal route. Journal of Materials Science: Materials in Electronics 25, 5231-5240 (2014).
82 Markad, G. B. et al. Mutual influence on aggregation and magnetic properties of graphene oxide and copper phthalocyanine through non-covalent, charge transfer interaction. Appl. Surf. Sci. 505, 144624 (2020).
83 Fraune, M., Rüdiger, U., Güntherodt, G., Cardoso, S. & Freitas, P. Size dependence of the exchange bias field in NiO/Ni nanostructures. Appl. Phys. Lett. 77, 3815-3817 (2000).
84 Jacobsen, H. et al. Spin dynamics and exchange interactions in CuO measured by neutron scattering. Phys. Rev. B 97, 144401 (2018).
85 Costas, A. et al. Magnetism and magnetoresistance of single Ni–Cu alloy nanowires. Beilstein journal of nanotechnology 9, 2345-2355 (2018).
86 Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation. Sci Rep 6, 24795 (2016).
87 Wang, Z. et al. Self-assembled zinc phthalocyanine nanoparticles as excellent photothermal/photodynamic synergistic agent for antitumor treatment. Chem. Eng. J. 361, 117-128 (2019).
88 Furuyama, T., Satoh, K., Kushiya, T. & Kobayashi, N. Design, Synthesis, and Properties of Phthalocyanine Complexes with Main-Group Elements Showing Main Absorption and Fluorescence beyond 1000 nm. J. Am. Chem. Soc. 136, 765-776 (2014).
89 Liu, G. M., Jaegermann, W., He, J. J., Sundstrom, V. & Sun, L. C. XPS and UPS characterization of the TiO2/ZnPcGly heterointerface: Aligmment of energy levels. J. Phys. Chem. B 106, 5814-5819 (2002).
90 Panneerselvam, V. et al. Role of copper/vanadium on the optoelectronic properties of reactive RF magnetron sputtered NiO thin films. Appl. Nanosci. 8, 1299-1312 (2018).
91 Zheng, D. S., Gao, Z. Y., He, X. Y., Zhang, F. J. & Liu, L. M. Surface and interface analysis for copper phthalocyanine (CuPc) and indium-tin-oxide (ITO) using X-ray photoelectron spectroscopy (XPS). Appl. Surf. Sci. 211, 24-30 (2003).
92 Sasi, B. & Gopchandran, K. G. Nanostructured mesoporous nickel oxide thin films. Nanotechnology 18, 9 (2007).
93 Li, Q. et al. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production. Sci Rep 6, 9 (2016).
94 Singh, A. P., Kumari, S., Shrivastav, R., Dass, S. & Satsangi, V. R. Iron doped nanostructured TiO2 for photoelectrochemical generation of hydrogen. Int. J. Hydrog. Energy 33, 5363-5368 (2008).
95 Kroemer, H. Quasi-electric fields and band offsets: Teaching electrons new tricks (Nobel lecture). ChemPhysChem 2, 490-+ (2001).
96 Böer, K. W. & Pohl, U. W. Semiconductor Physics. (Springer International Publishing, 2018).
97 Yang, W. W. et al. Plasmonic Pd Nanoparticle- and Plasmonic Pd Nanorod-Decorated BiVO4 Electrodes with Enhanced Photoelectrochemical Water Splitting Efficiency Across Visible-NIR Region. Nanoscale Res. Lett. 11, 8 (2016).
98 Wang, T., Lv, R., Zhang, P., Li, C. & Gong, J. Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 7, 77-81 (2015).
99 Hu, P. et al. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices. Nano letters 16, 1523-1529 (2016).
100 Madhu, G., Maniammal, K. & Biju, V. Defect induced ferromagnetic interaction in nanostructured nickel oxide with core–shell magnetic structure: the role of Ni 2+ and O 2− vacancies. Phys. Chem. Chem. Phys. 18, 12135-12148 (2016).
101 Stepanow, S. et al. Giant spin and orbital moment anisotropies of a Cu-phthalocyanine monolayer. Phys. Rev. B 82, 014405 (2010).
102 Alexandrov, E. V., Goltsev, A. V., Eremin, R. A. & Blatov, V. A. Anisotropy of Elastic Properties of Metal–Organic Frameworks and the Breathing Phenomenon. The Journal of Physical Chemistry C 123, 24651-24658 (2019).
103 Berkowitz, A. E., Lahut, J. A., Jacobs, I. S., Levinson, L. M. & Forester, D. W. Spin Pinning at Ferrite-Organic Interfaces. Phys. Rev. Lett. 34, 594-597 (1975).
104 Maria Lumina Sonia, M., Anand, S., Blessi, S., Pauline, S. & Manikandan, A. Effect of surfactants (PVB/EDTA/CTAB) assisted sol-gel synthesis on structural, magnetic and dielectric properties of NiFe2O4 nanoparticles. Ceramics International 44, 22068-22079 (2018).
105 Ansari, S. M. et al. Particle Size, Morphology, and Chemical Composition Controlled CoFe2O4 Nanoparticles with Tunable Magnetic Properties via Oleic Acid Based Solvothermal Synthesis for Application in Electronic Devices. ACS Applied Nano Materials 2, 1828-1843 (2019).
106 Zhang, W. Y., Gao, W., Zhang, X. Q., Li, Z. & Lu, G. X. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future. Appl. Surf. Sci. 434, 643-668 (2018).
107 Park, S. et al. Interaction and ordering of vacancy defects in NiO. Phys. Rev. B 77, 7 (2008).
108 Rawat, N. et al. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films. Sci Rep 5, 16536 (2015).
109 Wang, X. et al. Near room temperature ferromagnetism of copper phthalocyanine thin films. Appl. Surf. Sci. 356, 1070-1076 (2015).
110 Takahashi, R., Dahl, O., Eberg, E., Grepstad, J. K. & Tybell, T. Ferroelectric stripe domains in PbTiO3 thin films: Depolarization field and domain randomness. J. Appl. Phys. 104, 8 (2008).
111 Ichikawa, N. et al. Non-linear variation of domain period under electric field in demagnetized CoFeB/MgO stacks with perpendicular easy axis. Appl. Phys. Lett. 112, 202402 (2018).
112 Lepadatu, S. Effective field model of roughness in magnetic nano-structures. J. Appl. Phys. 118, 243908 (2015).
113 Mentink, J. H. Manipulating magnetism by ultrafast control of the exchange interaction. Journal of Physics: Condensed Matter 29, 453001 (2017).
114 Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633-637 (2018).
115 Gomez-Abal, R., Ney, O., Satitkovitchai, K. & Hubner, W. All-optical subpicosecond magnetic switching in NiO(001). Phys. Rev. Lett. 92, 4 (2004).