簡易檢索 / 詳目顯示

研究生: 魏子堂
Wei, Tzu-Tang
論文名稱: 新穎組蛋白去乙醯酶抑制劑-HTPB及三足樹枝狀HTPB分子覆蓋硒化鎘/硫化鋅 奈米粒子(Nano-HTPB)於肺癌治療之應用
Novel Histone Deacetylase Inhibitor-HTPB and Triantennary Dendritic HTPB Capped Nanohybrid with CdSe/ZnS Nanoparticles (Nano-HTPB) in Lung Cancer Treatment
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 80
中文關鍵詞: 組蛋白去乙醯酶組蛋白去乙醯酶抑制劑奈米粒子肺癌
外文關鍵詞: histone deacetylase, histone deacetylase inhibitor, HTPB, Nano-HTPB, SAHA.
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:前人研究發現,在許多固體及血液腫瘤中,組蛋白去乙醯酶 (Histone deacetylases, HDACs) 常有過度表現或活性增加的情況,但在正常細胞的基礎表現量卻很低,因此HDACs為極具潛力的癌症治療標靶。現行的組蛋白去乙醯酶抑制劑已證實具有多種抑癌能力並使用於血液腫瘤臨床治療上;然而,組蛋白去乙醯酶抑制劑對於固體腫瘤的治療效果仍須進一步研究。
    研究目的:藉由人類肺癌細胞及動物實驗模式,評估新穎的組蛋白去乙醯酶抑制劑-HTPB (全名N-Hydroxy-4-(4- phenylbutyryl-amino) benzamide)及Nano-HTPB(HTPB硒化鎘/硫化鋅奈米粒子衍生物)的抗癌能力。
    研究方法及結果:本研究將Nano-HTPB處理不同肺癌細胞株,於6~48小時後觀察到Nano-HTPB有進入到細胞核的情況,顯示可以成功的將奈米粒子作為HTPB藥物傳遞載體。本研究進一步發現,Nano-HTPB及HTPB對不同肺癌細胞株的毒殺能力顯著高於現行臨床用藥SAHA,且對正常肺細胞沒有明顯毒殺影響。其中,Nano-HTPB具有nM程度之IC50,毒殺效果高於HTPB數百倍。本研究亦觀察到,Nano-HTPB及HTPB促使細胞滯留在G2/M時期,並透過活化凋亡相關蛋白及內在粒線體途徑中的caspase-3/9而誘導癌細胞凋亡。由組蛋白去乙醯酶螢光活性實驗顯示,Nano-HTPB及HTPB屬於廣泛型組蛋白去乙醯酶抑制劑,並有效促使組蛋白及非組蛋白的乙醯化。此外,Nano-HTPB及HTPB可透過降低基質金屬蛋白酶(matrix metalloproteinases) 活性、抑制RhoA活性、焦點黏著複合體(focal adhesion complex) 的活化、及F-actin細胞骨架的聚集,而抑制癌細胞遷移的能力。由異位移植腫瘤動物模式實驗顯示,無論以腹腔注射或口服給藥方式,Nano-HTPB及HTPB在動物活體也能有效抑制腫瘤生長,且沒有明顯副作用的出現。此外,HTPB明顯抑制小鼠乳癌4T1細胞轉移至肺臟的能力。
    結論:細胞及動物實驗結果顯示,Nano-HTPB及HTPB可以有效抑制肺癌腫瘤生長及細胞移動,為具潛力及臨床發展價值的肺癌治療藥物。目前我們已著手進行Nano-HTPB與HTPB對於腫瘤轉移抑制的效果,以及於動物體內之藥物代謝及動力學探討。

    Background: Overexpression and/or increased activity of histone deacetylases (HDACs) in hematologic and solid malignancies make HDACs a potential therapeutic target for cancer treatment. HDAC inhibitors have shown pleiotropic anticancer activities in hematological cancers. However, validated HDAC inhibitors for the treatment of solid tumors remain to be developed.
    Purpose: To develop novel HDAC inhibitors to treat solid tumor, the current study evaluated the antitumor effects of novel HDAC inhibitors, N-Hydroxy-4-(4- phenylbutyryl-amino) benzamide HTPB and its nanoparticle-conjugated derivative Nano-HTPB by in vitro and in vivo models of human lung cancer.
    Results: We found that Nano-HTPB delivered to cell nucleus at 6~48 hours in various lung cancer cell lines, indicating that HTPB conjugated with quantum dot nanoparticles was a feasible strategy for cancer cell delivery. In addition, Nano-HTPB and HTPB significantly induced cytotoxicity more potent than FDA-approved HDAC inhibitor SAHA in various lung cancer cells, without showing apparent cytotoxicity towards normal lung cells. Nano-HTPB was more potent than HTPB in IC50 values, which were in nM ranges. Nano-HTPB and HTPB induced G2/M arrest and led to apoptotic DNA ladder accompanied with induction of proapoptotic-related proteins and mitochondria-specific caspase-3/9 activities. The data from HDAC fluorometric activity assay suggested that Nano-HTPB and HTPB were pan-HDAC inhibitors, and they stimulated acetylation of histone and non-histone proteins in dose-dependent and time-dependent manners. In addition, Nano-HTPB and HTPB inhibited cancer cell migration at non-cytotoxic doses, which through inhibiting activity of matrix metalloproteinases, RhoA, and focal adhesion complex. Furthermore, the data from confocal microscopy analysis indicated that the polymerization of F-actin stress fiber was dramatically inhibited after Nano-HTPB or HTPB treatment. Finally, Nano-HTPB and HTPB efficiently inhibited tumor growth in xenograft animal models without significant side effects. In addition, HTPB significantly inhibited metastasis of 4T1-luc cells in vivo.
    Conclusions: Our findings suggest that Nano-HTPB and HTPB are potent HDAC inhibitors and have clinical value in lung cancer treatment because they inhibit tumor growth and cell migration. The in vivo anti-metastasis effect, in vivo metabolic effects, and pharmacokinetics of Nano-HTPB and HTPB are under investigation.

    Introduction--------------------------------------------------------------------------------------1 I. Lung Cancer--------------------------------------------------------------------------------1 i. The epidemiology of lung cancer--------------------------------------------------1 ii. Staging and treatments of NSCLC-------------------------------------------------1 iii. Traditional chemotherapy agents of NSCLC-------------------------------------2 iv. Molecular-targeted therapies--------------------------------------------------------2 II. Chromatin modification and histone deacetylases (HDACs)------------------------3 i. Genetic and epigenetic alterations in cancer--------------------------------------3 ii. Chromatin modification-------------------------------------------------------------3 iii. Histone deacetylases (HDACs)----------------------------------------------------4 iv. HDACs and cancer-----------------------------------------------------------------4 III. HDACs as a target for cancer treatment-----------------------------------------------5 i. The molecular mechanism and classification of HDAC inhibitors (HDACIs)---------------------------------------------------------------------------- 5 ii. HDACIs in current clinical use and clinical trials------------------------------6 iii. Design and synthesis of novel HDACIs with hydroxamic acid structure---7 IV. Overview of apoptosis-------------------------------------------------------------------7 i. Apoptosis----------------------------------------------------------------------------7 ii. Caspases (cysteine-dependent aspartate-specific proteases)------------------8 iii. BCL-2 family (B-cell lymphoma 2 family)-------------------------------------8 iv. Pathways of apoptosis--------------------------------------------------------------9 v. Apoptosis and cancer---------------------------------------------------------------9 V. Overview of cell cycle-------------------------------------------------------------------10 i. Cell cycle----------------------------------------------------------------------------10 ii. Cyclins and cyclin-dependent kinases (CDKs)---------------------------------10 iii. Cyclin-dependent kinases inhibitors (CKIs)------------------------------------11 iv. Cell cycle checkpoints-------------------------------------------------------------11 v. Cell cycle and cancer---------------------------------------------------------------12 VI. Overview of metastasis------------------------------------------------------------------12 i. Metastasis and cancer--------------------------------------------------------------12 ii. Matrix metalloproteinases (MMPs)----------------------------------------------13 iii. Integrins: a superfamily of cell surface receptors------------------------------14 iv. Rho family of small GTPases-----------------------------------------------------14 v. Fibronectin matrix assembly------------------------------------------------------15 VII. Overview of cancer nanotechnology---------------------------------------------------15 i. Cancer nanotechnology------------------------------------------------------------15 ii. Classification and application of current nanoparticles----------------------16 iii. Properties and current applications of quantum dot (QD) nanoparticles----17 iv. Nanoparticles and drug delivery systems----------------------------------------17 Purposes-----------------------------------------------------------------------------------------19 I. In cell models-----------------------------------------------------------------------------19 II. In animal models--------------------------------------------------------------------------19 Materials and Methods-----------------------------------------------------------------------20 I. Materials-----------------------------------------------------------------------------------20 i. Cell lines-----------------------------------------------------------------------------20 ii. HTPB---------------------------------------------------------------------------------20 iii. Nano-HTPB-------------------------------------------------------------------------21 iv. Animal model-----------------------------------------------------------------------34 II. Methods------------------------------------------------------------------------------------34 i. Cell culture--------------------------------------------------------------------------34 ii. Cell cytotoxicity assay/MTT assay-----------------------------------------------34 iii. Analysis of cell cycle distribution------------------------------------------------35 iv. Determination of apoptotic DNA ladder-----------------------------------------35 v. Western blot analysis---------------------------------------------------------------35 vi. Immunoprecipitation (IP) and Western blot analysis--------------------------36 vii. Real-time reverse-transcriptase polymerase chain reaction (RT-PCR)------36 viii. Caspase activity assay--------------------------------------------------------------36 ix. HDAC activity assay---------------------------------------------------------------36 x. Trans-well migration assay--------------------------------------------------------37 xi. Wound-healing assay---------------------------------------------------------------37 xii. RhoA-GTP pull down assay-------------------------------------------------------37 xiii. Gelatin-zymography assay--------------------------------------------------------37 xiv. Immunofluorescence staining and confocal microscopic analysis----------38 xv. Animal model-in vivo anti-cancer growth assay-----------------------------38 xvi. Animal model-in vivo anti-cancer metastasis assay--------------------------38 xvii. Statistical analysis------------------------------------------------------------------39 Results-------------------------------------------------------------------------------------------40 I. Nano-galactose and Nano-HTPB deliver to cell nucleus within 48 hours incubation in A549 lung cancer cell line----------------------------- 40 II. Nano-HTPB and HTPB inhibit cell growth of lung cancer cell lines without affecting the normal lung cell line--------------------------- 40 III. Nano-HTPB and HTPB induce protein acetylation with ability to target numerous HDACs----------------------------------------------------------- 40 IV. Nano-HTPB and HTPB inhibit lung cancer cell growth through cell apoptosis induction and cell cycle G2/M arrest--------------------------------41 V. Nano-HTPB and HTPB suppress migration ability at non-cytotoxicity doses in lung cancer cell lines----------------------------------------------------- 42 VI. Nano-HTPB and HTPB suppress migration ability through inhibiting activity of matrix metalloproteinases, RhoA, and focal adhesion complex--- 42 VII. Nano-HTPB and HTPB inhibit F-actin stress fiber polymerization in lung cancer cell lines---------------------------------------------------------------- 43 VIII. Nano-HTPB and HTPB down-regulate total RhoA protein through accelerating ubiquitin-26S proteasomal degradation and reducing RhoA mRNA expression in lung cancer cell lines------------------------------ 43 IX. Nano-HTPB and HTPB down-regulate AKT activity in lung cancer cell lines--------------------------------------44 X. Nano-HTPB and HTPB efficiently inhibit tumor growth in vivo without significant side effects------------------------------------------------------------ 44 XI. HTPB efficiently induces protein acetylation and apoptosis in vivo---------45 Discussion---------------------------------------------------------------------------------------46 References--------------------------------------------------------------------------------------49 Figures-------------------------------------------------------------------------------------------56 Tables--------------------------------------------------------------------------------------------74 Supplemental information-------------------------------------------------------------------77 FIGURE CONTENT Figure 1 Structures and cellular localization of classes I, IIa, IIb, III (SIRT) and IV histone deacetylases (HDACs)----------------------------------------- 56 Figure 2 Structure of SAHA bound to a histone deacetylase-like protein (HDLP)- 57 Figure 3 Chemical structures, IC50 cytotoxicity assay, and the effect of Nano-HTPB and HTPB on acetylation of proteins--------------------------- 58 Figure 4 Nano-HTPB and HTPB induce lung cancer cell apoptosis and cell cycle G2/M arrest------------------------------------------------------------ 60 Figure 5 Nano-HTPB and HTPB decrease migration ability of H1299 and A549 lung cancer cell lines in trans-well migration assay and wound healing assay-------------------------------------------------------------- 63 Figure 6 Nano-HTPB and HTPB inhibit cancer cell migration, which through inhibiting activity of matrix metalloproteinases, RhoA and focal adhesion complex----------------------------------------------------------------- 65 Figure 7 Nano-HTPB remarkably reduces tumor growth of 4T1-Luc xenograft animal models without significant side effects--------------------------------- 67 Figure 8 HTPB remarkably reduces tumor growth of A549 xenograft animal models without significant side effects-------------------------------- 68 Figure 9 HTPB inhibits 4T1-luc breast cancer cell metastasis in animal models ----------------------------------------------------------------- 71 . TABLE CONTENT Table 1 HDACs overexpression and/or activity alteration in variety of human cancers------------------------------------------------------------------------------- 74 Table 2 Several classes of HDAC inhibitors in clinical trials-------------------------- 75 Table 3 The antibodies and their reaction conditions used in the present study----- 76 SUPPLEMENTAL INFORMATION CONTENT Measurement of Nano-HTPB concentration--------------------------------------------77 Figure S1 Nano-HTPB accelerates Akt activation and ubiquitin-26S proteasomal degradation of RhoA and reduces RhoA mRNA expression in lung cancer cells-----------------------------------------79

    Acharya, M.R., Sparreboom, A., Venitz, J., and Figg, W.D. (2005). Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 68, 917-932.
    Alexis, F., Rhee, J.W., Richie, J.P., Radovic-Moreno, A.F., Langer, R., and Farokhzad, O.C. (2008). New frontiers in nanotechnology for cancer treatment. Urol Oncol 26, 74-85.
    Arellano, M., and Moreno, S. (1997). Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol 29, 559-573.
    Aznar, S., Fernandez-Valeron, P., Espina, C., and Lacal, J.C. (2004). Rho GTPases: potential candidates for anticancer therapy. Cancer Lett 206, 181-191.
    Balch, C., Montgomery, J.S., Paik, H.I., Kim, S., Huang, T.H., and Nephew, K.P. (2005). New anti-cancer strategies: epigenetic therapies and biomarkers. Front Biosci 10, 1897-1931.
    Beckles, M.A., Spiro, S.G., Colice, G.L., and Rudd, R.M. (2003). The physiologic evaluation of patients with lung cancer being considered for resectional surgery. Chest 123, 105S-114S.
    Bolden, J.E., Peart, M.J., and Johnstone, R.W. (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5, 769-784.
    Broker, L.E., Kruyt, F.A., and Giaccone, G. (2005). Cell death independent of caspases: a review. Clin Cancer Res 11, 3155-3162.
    Browner, I., and Purtell, M. (2009). Chemotherapy in the older patient with operable non-small cell lung cancer: neoadjuvant and adjuvant regimens. Thorac Surg Clin 19, 377-389.
    Bruske-Hohlfeld, I. (2009). Environmental and occupational risk factors for lung cancer. Methods Mol Biol 472, 3-23.
    Budillon, A., Di Gennaro, E., Bruzzese, F., Rocco, M., Manzo, G., and Caraglia, M. (2007). Histone deacetylase inhibitors: a new wave of molecular targeted anticancer agents. Recent Pat Anticancer Drug Discov 2, 119-134.
    Campas-Moya, C. (2009). Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today (Barc) 45, 787-795.
    Carragher, N.O., and Frame, M.C. (2004). Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14, 241-249.
    Chen, C.T., Munot, Y.S., Salunke, S.B., Wang, Y.C., Lin, R.K., Lin, C.C., Chen, C.C., and Liu, Y.H. (2008). A triantennary dendritic galactoside-capped nanohybrid with a ZnS/CdSe nanoparticle core as a hydrophilic, fluorescent, multivalent probe for metastatic lung cancer cells. Adv Funct Mater 18, 527-540.
    Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Day, C.L., Adams, J.M., and Huang, D.C. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17, 393-403.
    Chipuk, J.E., and Green, D.R. (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18, 157-164.
    Collins, L.G., Haines, C., Perkel, R., and Enck, R.E. (2007). Lung cancer: diagnosis and management. Am Fam Physician 75, 56-63.
    Cuenca, A.G., Jiang, H., Hochwald, S.N., Delano, M., Cance, W.G., and Grobmyer, S.R. (2006). Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107, 459-466.
    Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219.
    De Jong, W.H., and Borm, P.J. (2008). Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 3, 133-149.
    Debevec, L., and Debeljak, A. (2007). Multidisciplinary management of lung cancer. J Thorac Oncol 2, 577.
    Degli Esposti, M., and Dive, C. (2003). Mitochondrial membrane permeabilisation by Bax/Bak. Biochem Biophys Res Commun 304, 455-461.
    Dempke, W.C.M., Suto, T., and Reck, M. (2010). Targeted therapies for non-small cell lung cancer. Lung Cancer 67, 257-274.
    Detterbeck, F.C., Boffa, D.J., and Tanoue, L.T. (2009). The new lung cancer staging system. Chest 136, 260-271.
    Dong, X., Mattingly, C.A., Tseng, M.T., Cho, M.J., Liu, Y., Adams, V.R., and Mumper, R.J. (2009). Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res 69, 3918-3926.
    Elder, A., Vidyasagar, S., and DeLouise, L. (2009). Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1, 434-450.
    Ellenbroek, S.I., and Collard, J.G. (2007). Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24, 657-672.
    Emanuele, S., Lauricella, M., and Tesoriere, G. (2008). Histone deacetylase inhibitors: apoptotic effects and clinical implications (Review). Int J Oncol 33, 637-646.
    Fakih, M.G., Pendyala, L., Fetterly, G., Toth, K., Zwiebel, J.A., Espinoza-Delgado, I., Litwin, A., Rustum, Y.M., Ross, M.E., Holleran, J.L., and Egorin, M.J. (2009). A phase I, pharmacokinetic and pharmacodynamic study on vorinostat in combination with 5-fluorouracil, leucovorin, and oxaliplatin in patients with refractory colorectal cancer. Clin Cancer Res 15, 3189-3195.
    Farokhzad, O.C., and Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano 3, 16-20.
    Fesik, S.W. (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5, 876-885.
    Fidler, I.J. (2002). Critical determinants of metastasis. Semin Cancer Biol 12, 89-96.
    Finley, R.S. (2003). Overview of targeted therapies for cancer. Am J Health-Syst Ph 60, S4-S10.
    Gojo, I., Jiemjit, A., Trepel, J.B., Sparreboom, A., Figg, W.D., Rollins, S., Tidwell, M.L., Greer, J., Chung, E.J., Lee, M.J., Gore, S.D., Sausville, E.A., Zwiebel, J., and Karp, J.E. (2007). Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109, 2781-2790.
    Green, D.R. (2005). Apoptotic pathways: ten minutes to dead. Cell 121, 671-674.
    Green, M.R., Manikhas, G.M., Orlov, S., Afanasyev, B., Makhson, A.M., Bhar, P., and Hawkins, M.J. (2006). Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 17, 1263-1268.
    Grobmyer, S.R., Iwakuma, N., Sharma, P., and Moudgil, B.M. (2010). What is cancer nanotechnology? Methods Mol Biol 624, 1-9.
    Gu, Y.J., Cheng, J., Lin, C.C., Lam, Y.W., Cheng, S.H., and Wong, W.T. (2009). Nuclear penetration of surface functionalized gold nanoparticles. Toxicol Appl Pharmacol 237, 196-204.
    Gurdag, S., Khandare, J., Stapels, S., Matherly, L.H., and Kannan, R.M. (2006). Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem 17, 275-283.
    Hake, S.B., Xiao, A., and Allis, C.D. (2004). Linking the epigenetic 'language' of covalent histone modifications to cancer. Br J Cancer 90, 761-769.
    Haley, B., and Frenkel, E. (2008). Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26, 57-64.
    Han, S., Khuri, F.R., and Roman, J. (2006). Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res 66, 315-323.
    Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
    Hartman, K.B., Wilson, L.J., and Rosenblum, M.G. (2008). Detecting and treating cancer with nanotechnology. Mol Diagn Ther 12, 1-14.
    Heath, J.R., and Davis, M.E. (2008). Nanotechnology and cancer. Annu Rev Med 59, 251-265.
    Hild, W.A., Breunig, M., and Goepferich, A. (2008). Quantum dots - nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68, 153-168.
    Hood, J.D., and Cheresh, D.A. (2002). Role of integrins in cell invasion and migration. Nat Rev Cancer 2, 91-100.
    Huber, R.M., and Stratakis, D.F. (2004). Molecular oncology--perspectives in lung cancer. Lung Cancer 45 Suppl 2, S209-213.
    Hunter, K.W., Crawford, N.P., and Alsarraj, J. (2008). Mechanisms of metastasis. Breast Cancer Res 10 Suppl 1, S2.
    Insinga, A., Monestiroli, S., Ronzoni, S., Gelmetti, V., Marchesi, F., Viale, A., Altucci, L., Nervi, C., Minucci, S., and Pelicci, P.G. (2005). Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11, 71-76.
    Ishihama, K., Yamakawa, M., Semba, S., Takeda, H., Kawata, S., Kimura, S., and Kimura, W. (2007). Expression of HDAC1 and CBP/p300 in human colorectal carcinomas. J Clin Pathol 60, 1205-1210.
    Israels, E.D., and Israels, L.G. (2000). The cell cycle. Oncologist 5, 510-513.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., and Thun, M.J. (2009). Cancer statistics, 2009. CA Cancer J Clin 59, 225-249.
    Johnson, D.G., and Walker, C.L. (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39, 295-312.
    Johnstone, R.W. (2002). Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1, 287-299.
    Jones, P.A., and Baylin, S.B. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415-428.
    Kakinuma, N., Roy, B.C., Zhu, Y., Wang, Y., and Kiyama, R. (2008). Kank regulates RhoA-dependent formation of actin stress fibers and cell migration via 14-3-3 in PI3K-Akt signaling. J Cell Biol 181, 537-549.
    Kang, K.W., Chun, M.K., Kim, O., Subedi, R.K., Ahn, S.G., Yoon, J.H., and Choi, H.K. (2010). Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine 6, 210-213.
    Kodama, A., Matozaki, T., Shinohara, M., Fukuhara, A., Tachibana, K., Ichihashi, M., Nakanishi, H., and Takai, Y. (2001). Regulation of Ras and Rho small G proteins by SHP-2. Genes Cells 6, 869-876.
    Lane, A.A., and Chabner, B.A. (2009). Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27, 5459-5468.
    Lazebnik, Y. (2010). What are the hallmarks of cancer? Nat Rev Cancer 10, 232-233.
    Li, D., Ding, J., Wang, X., Wang, C., and Wu, T. (2009). Fibronectin promotes tyrosine phosphorylation of paxillin and cell invasiveness in the gastric cancer cell line AGS. Tumori 95, 769-779.
    Lu, Q., Wang, D.S., Chen, C.S., and Hu, Y.D. (2005). Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J Med Chem 48, 5530-5535.
    Lu, Q., Yang, Y.T., Chen, C.S., Davis, M., Byrd, J.C., Etherton, M.R., and Umar, A. (2004). Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors. J Med Chem 47, 467-474.
    Malam, Y., Loizidou, M., and Seifalian, A.M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30, 592-599.
    Mamot, C., Drummond, D.C., Noble, C.O., Kallab, V., Guo, Z., Hong, K., Kirpotin, D.B., and Park, J.W. (2005). Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65, 11631-11638.
    Mann, B.S., Johnson, J.R., Cohen, M.H., Justice, R., and Pazdur, R. (2007). FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12, 1247-1252.
    Meng, X.N., Jin, Y., Yu, Y., Bai, J., Liu, G.Y., Zhu, J., Zhao, Y.Z., Wang, Z., Chen, F., Lee, K.Y., and Fu, S.B. (2009). Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. Br J Cancer 101, 327-334.
    Merisko-Liversidge, E., Liversidge, G.G., and Cooper, E.R. (2003). Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18, 113-120.
    Michan, S., and Sinclair, D. (2007). Sirtuins in mammals: insights into their biological function. Biochem J 404, 1-13.
    Mitra, S.K., Hanson, D.A., and Schlaepfer, D.D. (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6, 56-68.
    Mountain, C.F. (1997). Revisions in the International System for Staging Lung Cancer. Chest 111, 1710-1717.
    Nemunaitis, J.J., Orr, D., Eager, R., Cunningham, C.C., Williams, A., Mennel, R., Grove, W., and Olson, S. (2003). Phase I study of oral CI-994 in combination with gemcitabine in treatment of patients with advanced cancer. Cancer J 9, 58-66.
    Nie, S., Xing, Y., Kim, G.J., and Simons, J.W. (2007). Nanotechnology applications in cancer. Annu Rev Biomed Eng 9, 257-288.
    O'Connor, M., Lee, S., Chapman, Y., Francis, K., and Humphreys, J. (2009). A very public death. Mesothelioma & asbestos-related lung cancer. Aust Nurs J 16, 52-53.
    Ocker, M., Alajati, A., Ganslmayer, M., Zopf, S., Luders, M., Neureiter, D., Hahn, E.G., Schuppan, D., and Herold, C. (2005). The histone-deacetylase inhibitor SAHA potentiates proapoptotic effects of 5-fluorouracil and irinotecan in hepatoma cells. J Cancer Res Clin Oncol 131, 385-394.
    Overall, C.M., and Kleifeld, O. (2006). Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6, 227-239.
    Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., and Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2, 751-760.
    Perry, J.A., and Kornbluth, S. (2007). Cdc25 and Wee1: analogous opposites? Cell Div 2, 12.
    Pfister, D.G., Johnson, D.H., Azzoli, C.G., Sause, W., Smith, T.J., Baker, S., Jr., Olak, J., Stover, D., Strawn, J.R., Turrisi, A.T., and Somerfield, M.R. (2004). American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol 22, 330-353.
    Powell, A.C., Paciotti, G.F., and Libutti, S.K. (2010). Colloidal gold: a novel nanoparticle for targeted cancer therapeutics. Methods Mol Biol 624, 375-384.
    Raben, D., Helfrich, B., and Bunn, P.A. (2004). Targeted therapies for non-small-cell lung cancer: Biology, rationale, and preclinical results from a radiation oncology perspective. Int J Radiat Oncol 59, 27-38.
    Rathinam, R., and Alahari, S.K. (2010). Important role of integrins in the cancer biology. Cancer Metastasis Rev 29, 223-237.
    Reynolds, C., Barrera, D., Jotte, R., Spira, A.I., Weissman, C., Boehm, K.A., Pritchard, S., and Asmar, L. (2009). Phase II trial of nanoparticle albumin-bound paclitaxel, carboplatin, and bevacizumab in first-line patients with advanced nonsquamous non-small cell lung cancer. J Thorac Oncol 4, 1537-1543.
    Riedl, S.J., and Salvesen, G.S. (2007). The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8, 405-413.
    Ritzenthaler, J.D., Han, S., and Roman, J. (2008). Stimulation of lung carcinoma cell growth by fibronectin-integrin signalling. Mol Biosyst 4, 1160-1169.
    Ryan, Q.C., Headlee, D., Acharya, M., Sparreboom, A., Trepel, J.B., Ye, J., Figg, W.D., Hwang, K., Chung, E.J., Murgo, A., Melillo, G., Elsayed, Y., Monga, M., Kalnitskiy, M., Zwiebel, J., and Sausville, E.A. (2005). Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 23, 3912-3922.
    Sahai, E., and Marshall, C.J. (2002). RHO-GTPases and cancer. Nat Rev Cancer 2, 133-142.
    Sanchez, Y., Wong, C., Thoma, R.S., Richman, R., Wu, Z., Piwnica-Worms, H., and Elledge, S.J. (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497-1501.
    Saraste, A., and Pulkki, K. (2000). Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45, 528-537.
    Satyanarayana, A., and Kaldis, P. (2009). Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925-2939.
    Shi, Y. (2001). A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8, 394-401.
    Siddiqa, A., and Marciniak, R. (2008). Targeting the hallmarks of cancer. Cancer Biol Ther 7, 740-741.
    Smith, K.T., and Workman, J.L. (2009). Histone deacetylase inhibitors: anticancer compounds. Int J Biochem Cell Biol 41, 21-25.
    Sternlicht, M.D., and Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17, 463-516.
    Stinchcombe, T.E., and Socinski, M.A. (2009). Current treatments for advanced stage non-small cell lung cancer. Proc Am Thorac Soc 6, 233-241.
    Svenson, S. (2009). Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71, 445-462.
    Taylor, W.R., and Stark, G.R. (2001). Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815.
    Thomas, E.A., Coppola, G., Desplats, P.A., Tang, B., Soragni, E., Burnett, R., Gao, F., Fitzgerald, K.M., Borok, J.F., Herman, D., Geschwind, D.H., and Gottesfeld, J.M. (2008). The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc Natl Acad Sci U S A 105, 15564-15569.
    Thomassen, L.C., Aerts, A., Rabolli, V., Lison, D., Gonzalez, L., Kirsch-Volders, M., Napierska, D., Hoet, P.H., Kirschhock, C.E., and Martens, J.A. (2010). Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 26, 328-335.
    Toschi, L., and Cappuzzo, F. (2007). Understanding the new genetics of responsiveness to epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 12, 211-220.
    Tyson, J.J., Csikasz-Nagy, A., and Novak, B. (2002). The dynamics of cell cycle regulation. Bioessays 24, 1095-1109.
    Verma, A., and Stellacci, F. (2010). Effect of surface properties on nanoparticle-cell interactions. Small 6, 12-21.
    Vermeulen, K., Van Bockstaele, D.R., and Berneman, Z.N. (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36, 131-149.
    Vermeulen, K., Van Bockstaele, D.R., and Berneman, Z.N. (2005). Apoptosis: mechanisms and relevance in cancer. Ann Hematol 84, 627-639.
    Wang, X., Yang, L., Chen, Z.G., and Shin, D.M. (2008). Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58, 97-110.
    Wang, Z., Chui, W.K., and Ho, P.C. (2009). Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells. Pharm Res 26, 1162-1171.
    Weber, G.F. (2008). Molecular mechanisms of metastasis. Cancer Lett 270, 181-190.
    Whitrow, M.J., Smith, B.J., Pilotto, L.S., Pisaniello, D., and Nitschke, M. (2003). Environmental exposure to carcinogens causing lung cancer: epidemiological evidence from the medical literature. Respirology 8, 513-521.
    Witt, O., Deubzer, H.E., Milde, T., and Oehme, I. (2009). HDAC family: What are the cancer relevant targets? Cancer Lett 277, 8-21.
    Wu, J., Lu, Y., Lee, A., Pan, X., Yang, X., Zhao, X., and Lee, R.J. (2007). Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci 10, 350-357.
    Wyllie, A.H., and Golstein, P. (2001). More than one way to go. Proc Natl Acad Sci U S A 98, 11-13.
    Xu, W.S., Parmigiani, R.B., and Marks, P.A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541-5552.
    Yang, L., Peng, X.H., Wang, Y.A., Wang, X., Cao, Z., Ni, C., Karna, P., Zhang, X., Wood, W.C., Gao, X., Nie, S., and Mao, H. (2009). Receptor-targeted nanoparticles for in vivo imaging of breast cancer. Clin Cancer Res 15, 4722-4732.
    Yang, Y.N., Wang, Y., Wang, X.G., and Jiang, S.J. (2008). [Effects of trichostatin A and paclitaxel on apoptosis and mitochondrial membrane potential of human endometrial carcinoma Ark2 cells]. Ai Zheng 27, 816-821.
    Yu, X., Munge, B., Patel, V., Jensen, G., Bhirde, A., Gong, J.D., Kim, S.N., Gillespie, J., Gutkind, J.S., Papadimitrakopoulos, F., and Rusling, J.F. (2006). Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128, 11199-11205.
    Zheng, C., Qiu, L., Yao, X., and Zhu, K. (2009). Novel micelles from graft polyphosphazenes as potential anti-cancer drug delivery systems: drug encapsulation and in vitro evaluation. Int J Pharm 373, 133-140.

    下載圖示 校內:2014-08-30公開
    校外:2015-08-30公開
    QR CODE