簡易檢索 / 詳目顯示

研究生: 林詩雅
Lin, Shy-yea
論文名稱: 氣-油複合液滴的成型與燃燒特性分析
Formation and Burning of a Stream of Gas-in-Oil Compound Drops
指導教授: 林大惠
Lin, Ta-hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 70
中文關鍵詞: 液滴燃燒複合液滴爆裂液滴蒸發複合液柱複合液滴
外文關鍵詞: compound jet, rupture, compound drop, drop evaporation, drop combustion
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主題在產製單核的氣-油複合液滴,觀察其燃燒特性,並與單質液滴的燃燒特性做比較。氣-油複合液滴之產製採用同心管,內管通氣體,外管通液體,而複合液柱的噴嘴設計有外凸型、齊平型與內縮型三種,其中外凸型的噴嘴設計之複合液柱最為穩定。當複合液柱的氣泡頻率與雷利不穩定性(Rayleigh instability)一致時可形成氣-油複合液滴。複合液滴的外徑約為噴嘴尺寸的1.8倍,且複合液滴的內外徑比是氣-油速度比的函數。複合液滴的燃燒可分為複合液滴的爆裂噴發與單質液滴燃燒兩部份。當複合液滴進入高溫環境後會迅速爆裂洩出氣體,並形成液體噴柱,液體噴柱會進一步斷裂成小液滴,每顆複合液滴僅爆裂一次,從爆裂到噴柱形成前的時間約 ,複合液滴的爆裂與噴發行為不受環境溫度與包覆氣體種類的影響。單質液滴燃燒的蒸發速率常數隨環境氧濃度的提高而增加,本研究中實驗蒸發速率常數與半經驗公式值相近。

    In this study, a gas-in-oil compound drop was generated, and its burning characteristics were compared with those of a single-phase drop. Three types of coaxial nozzle were designed and investigated in this study, and we found that the nozzle with a protruding inner tube is the best design for the production of compound drops. The compound jet exhibited two modes: bubbling jet and compound drop. Compound drops were generated while the frequency of bubbles matched Rayleigh instability of the jet. The outer diameter of compound drop was about 1.8 times of the inner diameter of the outer tube, and the ratios of inner and outer diameter of the compound drop depended only on the core-to-shell velocity ratios. The burning of a gas-in-oil compound drop could be separated into two stages: rupturing of the compound drop and burning of single-phase drop. After entering high temperature surrounding, the compound drop would rupture and release the gas immediately just one time within . Rupturing of compound drop was independent of the surrounding temperature and the trapped gas. The evaporation rate constant of the burning single-phase drop increased with the fraction of oxygen in the surrounding, and the experimental evaporation rate constants matched the semi-theoretical results well.

    總目錄 I 表目錄 III 圖目錄 IV 符號說明 VI 一、緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-2-1 單質液柱 2 1-2-2 液-液複合液柱 2 1-2-3 氣-液複合液柱 3 1-2-4 液滴燃燒實驗法 4 1-3 研究動機與目的 5 二、氣-油複合液滴的成型 7 2-1實驗設備與研究方法 7 2-1-1 液滴產生系統 7 2-1-2 流體供應系統 8 2-1-3 觀測系統 9 2-2 氣-油複合液滴成型之特性分析 11 2-3 噴嘴設計對複合液滴的影響 13 2-3-1 噴嘴Type II與Type III的複合液柱特性分析 14 2-3-2 噴嘴設計對複合液滴的影響 15 2-4 結論 16 三、氣-油複合液滴燃燒特性分析 18 3-1 實驗設備與研究方法 18 3-1-1 液滴燃燒設備 18 3-1-2 熱板加熱系統 21 3-2 單質液滴燃燒特性分析 22 3-3 氣-油複合液滴燃燒特性分析 25 3-4 氣-油複合液滴的爆裂與噴發行為 27 3-5 結論 29 四、總結 30 五、參考文獻 32 六、附錄 36 圖表 39

    1. Savart, F., “Mémoire sur la constitution des veines liquids lancées par des orifices circulaires en mince paroi,” Ann. Chem. Phys., Vol. 53, p. 337, 1883.
    2. Lord Rayleigh, “On the capillary phenomena of jet,” Proc. R. Soc. London, Vol. 29, p. 71, 1879.
    3. Hertz, H. and Hermanrud, B., “A liquid compound jet,” J. Fluid Mech., Vol. 131, p. 271, 1983.
    4. Sakai, T., Sadakata, M., Sato, M. and Kumura, K., “Production of uniformly sized dual concentric droplets from coaxial smooth jet under applied ac electric field,” Atomization and sprays, Vol. 1, No. 2, p. 171, 1991.
    5. Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M. and Gañán-Calvo, A. M., “MicroNano encapsulation via electrified coaxial liquid jets,” Science, Vol. 295, p. 1695, 2002.
    6. Chiu, S. L. and Lin, T. H., “Experiment on the dynamics of a compound drop impinging on a hot surface,” Phys. Fluids, Vol. 17, p. 122103, 2005.
    7. Chen, R. H., Chiu, S. L. and Lin, T. H., “Resident time of a compound impinging on a hot surface,” Applied Thermal Engineering, Vol. 27, p. 2079, 2007.
    8. Kendall, J. M., Lee, M. C. and Wang, T. G., “Mental shell technology based upon hollow jet instability,” J. Va. Sci. Technol., Vol. 20, p. 1091, 1982.
    9. Kendall, J. M., “Experiments on annular liquid jet instability and on the formation of liquid shells,” Phys. Fluids, Vol. 29, p. 2086, 1986.
    10. Lee, C. P. and Wang, T. G., “A theoretical model for the annular jet instability,” Phys. Fluids, Vol. 29, p. 2076, 1986.
    11. Gañán-Calvo, A. M. and Gordillo, J. M., “Perfectly monodisperse microbubbling by capillary flow focusing,” Physical Review Letters, Vol. 87, p. 274501, 2001.
    12. Gordillo, J. M., Gañán-Calvo, A. M. and Pérez-Saborid, M., “Monodisperse microbubbling: Absolute instabilities in coflowing gas-liquid jets,” Phys. Fluids, Vol. 13, No. 12, p. 3839, 2001.
    13. Sevilla, A., Gordillo, J. M. and Martinez-Bazán, “Transition from bubbling to jetting in a coaxial air-water jet,” Phys. Fluids, Vol. 17, p. 018105, 2005.
    14. Sevilla, J. M., Gordillo, J. M. and Martinez-Bazán, “Bubble formation in a coflowing air-water stream,” J. Fluid Mech., Vol. 5330, p. 181, 2005.
    15. Ocampo-Barrera, R. and Villasenor, R., “An experimental study of the effect of water content on combustion of heavy fuel oil/water emusion droplets,” Combustion and Flame, Vol. 126, p. 1845, 2001.
    16. Yozgatlligil, A., Park, S. H. and Choi, M. Y., “Burning and sooting behavior of ethanol droplet combustion under microgravity conditions,” Combust. Sci. and Tech., Vol. 176, p. 1985, 2004.
    17. Lasheras, J. C., Fernandez-Pello, A. C. and Dryer, F. L., “Initial observations on the free combustion characteristics of water-in-fuel emulsions,” Combust. Sci. and Tech., Vol. 21, p. 1, 1979.
    18. Law, C. K., “Recent advanceds in droplet vaporization and combustion,” Prog. Energy Combust. Sci., Vol. 8, p. 171, 1982.
    19. Virepinte, J. F., Biscos, Y., Lavergne, G., Magre, P. and Collin, G., “A rectilinear droplet stream in combustion: droplet and gas phase properties,” Combust. Sci. and Tech., Vol. 150, p. 143, 2000.
    20. Shaw, B. D., Dwyer, H. A. and Wei, J. B., “Studies on combustion of single and double streams of methanol and methanol/dodecanol droplets,” Combust. Sci. and Tech., Vol. 174, p. 29, 2002.
    21. C. H. Wang, C. Z. Lin. W. G. Hung, W. C. Huang and C. K. Law, "On the burning characteristics of collision-generated water/hexadecane droplets," Combust. Sci. and Tech., Vol.176, p. 71, 2004.
    22. Goedde, E. F. and Yuen, M. C., “Experiments on liquid jet instability,” J. Fluids Mech., Vol. 40, p. 495, 1970.
    23. Vassallo, P. and Ashgriz, N., “Satellite formation and merging in liquid jet,” Proc. R. Soc. London, Ser. A, Vol. 433, p. 269, 1991.
    24. Cossali, G. E., Marengo, M., Santini, M. and Fest, S., “Effect of wall effusivity on thermally induced secondary atomization of single drop impacting onto a tilted surface,” C3-02-082, ICLASS-2006, Aug, 27-Sept. 1, Kyoto, Japan, 2006.
    25. Kientzler, C. F., Arons, A. B., Blanchard, D. C. and Woodcock, A. H., “Photographic investigation of the projection of droplets by bubbles bursting at a water surface,” Tellus, Vol. 6, p. 1, 1954.
    26. Macintyre, F., “Flow patterns in breaking bubbles,” J. Geo. Res., Vol. 77, No. 27, p. 5211, 1972.
    27. Blanchard, D. C., “The size and height to which jet drops are ejectied form bursting bubbles in seawater,” J. Geo. Res., Vol. 94, No. C8, p. 10999, 1989.
    28. Spiel, D. E., “On the births of jet drops from bubbles bursting on water surfaces,” J. Geo. Res., Vol. 100, No. C3, p. 4995, 1995.

    下載圖示 校內:2013-06-24公開
    校外:2013-06-24公開
    QR CODE