| 研究生: |
黃順賢 Huang, Soon-Cen |
|---|---|
| 論文名稱: |
細胞死亡於GnRH-a 引發子宮肌瘤體積縮小的角色之研究 Roles of Cell Death in Tumor Volume Reduction of the Uterine Leiomyomas Treated with GnRH Agonists (GnRH-a) |
| 指導教授: |
周振陽
Chou, Cheng-Yang 湯銘哲 Tang, Ming-Jer |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 子宮肌瘤 、細胞死亡 |
| 外文關鍵詞: | Polyadenosine diphosphate-ribosylation (PAR), Poly(ADP-ribose) polymerase (PARP), Bcl-2, Caspase, Fas ligand, Cell death, Fas, Uterine leiomyoma, Gonadotropin-releasing hormone agonist (GnRH-a) |
| 相關次數: | 點閱:127 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經過GnRH-a治療後之子宮肌瘤大部份會縮小體積,進而利於手術切除,至於GnRH-a所引發肌瘤縮小的機制大致可歸因於細胞縮小,細胞數目減少,以及類似結疤過程之續發性收縮,細胞數目的減少可以是經由Apoptosis或Necrosis發生。某些GnRH-a治療後細胞病理學上的變化,可能無法直接用因治療而引發卵巢所分泌之賀爾蒙下降來解釋。過去我們的研究發現,以Leuplin Depot® (Leuprorelin acetate, Depot; LA)--一種長效性之GnRH-a,治療後之子宮肌瘤,可能會增加其細胞的DNA damage進而增加其DNA修補的活性,可是其細胞凋亡的數目並未增加。GnRH-a如何使子宮肌瘤體積縮小的作用機制有待進一步探討。
於此論文中,我們嘗試探討細胞死亡於經GnRH-a治療後之子宮肌瘤體積縮小的角色及其機制,於本論文的第一個計畫,我們進一步證實經由治療後,某些與促進細胞凋亡有關的重要因子如Fas,Fas ligand,Caspase 3,會因治療而下降,且抑制細胞凋亡有關之因子如Bcl-2並不因治療而下降。因此細胞凋亡於GnRH-a治療後之子宮肌瘤體積縮小上,應可確定不扮有重要角色。在第二個計畫中,我們假設GnRH-a 治療會引發腫瘤血流的減少及/或賀爾蒙的下降並進而導致DNA damage,poly(ADP-ribose) polymerase (PARP),另一種DNA損傷修補的酵素其表現量會比未治療的病例明顯的上升。於DNA修補當中,PARP會消耗細胞內的ATP含量,並使細胞的polyadenosine diphosphate-ribosylation(PAR)及其產物poly(ADP-ribose) (PAR)增加,Polyadenosine diphosphate-ribosylation的增強將更進一步抑制細胞的轉錄作用及細胞生長。如果細胞耗盡了ATP,隨之而來的就是細胞的死亡(Neocrosis)。在此研究計劃中,我們以in vivo及in vitro方式驗證此一假說,以color Doppler sonography測量腫瘤血流的分布, 發現隨著LA的治療, 血流逐漸減少的變化,其可能引起組織缺血變化及後續之PARP及PAR增加, 我們也發現組織PARP及PAR的表現與細胞病理變化及臨床反應相關.
Most uterine leiomyomas shrink as a result of administration of gonadotropin-releasing hormone (GnRH) agonist (GnRH-a) and thus regarded useful in facilitating the removal of leiomyomas. The mechanisms how GnRH-a acts on uterine leiomyomas have not been fully resolved. Available data showed that in addition to induce a physical retraction of the tissue, similar to the scarring process, the shrinkage of tumor is believed to be due in part to the changes in the individual leiomyoma cells including the induction of cellular atrophy of leiomyoma cells, and/or a decrease in the number of leiomyoma cells (cell death-induction and mitosis-suppression). Cell death could be resulted from either apoptosis or necrosis. Some of the cytopathological changes in leiomyomas treated by GnRH-a could not be mediated directly by reduced ovarian hormones induced by this kind of treatment. Our previous study indicated that Leuplin Depot® (Leuprorelin acetate, Depot; LA), a kind of long-acting GnRH-a, treatment of the uterine leiomyoma did not increase apoptotic cell count while DNA repair activity following DNA damage could be elevated. The mechanisms how GnRH-a reduces tumor volumes of uterine leiomyomas deserves further investigation.
In this thesis, we tried to elucidate the role of cell death, either apoptosis or necrosis, in the tumor volume reduction of the uterine leiomyomas treated with GnRH-a and how it works. In the first project, we demonstrated that several factors such as Fas and its ligand, caspase 3 that promoting apoptosis were significant decreased and Bcl-2 level was maintained after this kind of treatment to suppress apoptosis. Therefore, apoptosis should not play an important role in this kind of treatment. In the second project we hypothesized that increased DNA damage after LA treatment when poly(ADP-ribose) polymerase (PARP), a nuclear enzyme relating to DNA repair, is activated and its end product, poly(ADP-ribose) (PAR) accumulates that further inhibit DNA transcription and cell growth. Extensive activation leads to cell necrosis as a result of energy depletion. In this study we found that LA-treated leiomyomas had higher PARP and PAR expressions and found a positive correlation with tumor shrinkage and degeneration caused by the therapy. The 3-D color Doppler sonography indicated a progressive decrease in blood supply to tumor following LA treatment. The results of the second project suggested that progressively reduced blood flow and subsequent ischemic damages in leiomyoma could be responsible for PARP over-expression and PAR accumulation, clinical response and tumor degeneration caused by LA treatment.
1.Adamson G.D.Treatment of uterine fibroids: current findings with gonadotropin-releasing hormone agonists. Am J Obstet Gynecol 166:746-751,1992.
2.Aharoni A., A. Reiter, D. Golan, Y. Paltiely, and M. Sharf. Patterns of growth of uterine leiomyomas during pregnancy. A prospective longitudinal study.
Br J Obstet Gynaecol 95:510-513, 1988.
3.Alderson M.R., R.J. Armitage, E. Maraskovsky, T.W. Tough, E. Roux, K. Schooley, F. Ramsdell, and D.H. Lynch. Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178:2231-2235, 1993.
4.Alderson M.R., T.W. Tough, T. Davis-Smith, S. Braddy, B. Falk, K.A. Schooley, R.G. Goodwin, C.A. Smith, F. Ramsdell, and D.H. Lynch. Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 181:71-77, 1995.
5.Badorff C., H. Ruetten, S. Mueller, M. Stahmer, D. Gehring, F. Jung, C. Ihling, A.M. Zeiher, and S. Dimmeler. Fas receptor signaling inhibits glycogen synthase kinase 3ß and induces cardiac hypertrophy following pressure overload. J Clin Invest 109:373-381, 2002.
6.Belchetz P.E., T.M. Plant, Y. Nakai, E.J. Keogh, and E.Knobil. Hypophysial responses to continuous and intermittent delivery of hypothalamic gonadotropin-releasing hormone. Science 202: 631–633, 1978.
7.Bennett M.R., K. Macdonald, S.W. Chan, J.P. Luzio, R. Simari, and P.L. Weissberg. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282:290-293, 1998.
8.Bennett RG, Hamel FG, Duckworth WC. Insulin inhibits the ubiquitin-dependent degrading activity of the 26S proteasome. Endocrinology 141: 2508-2517, 2000.
9.Berger N.A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101:4-15, 1985.
10.Bonfoco E., D. Krainc, M. Ankarcrona, P. Nicotera, and S.A. Lipton. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92:7162-7166, 1995.
11.Budd RC. Death receptors couple to both cell proliferation and apoptosis. J Clin Invest109: 437-441, 2002.
12.Burroughs K.D., K. Kiguchi, S.R. Howe, R. Fuchs-Young, D.Trono, J.C. Barrett, and C. Walker. Regulation of apoptosis in uterine leiomyomata. Endocrinology 138:3056-3064, 1997.
13.Buttke T.M., and P.A. Sandstrom. Oxidative stress as a mediator of apoptosis. Immunol Today 15:7-10, 1994.
14.Buttram V.C. Jr., and R.C. Reiter. Uterine leiomyomata: etiology, symptomatology, and management. Fertil Steril 36: 433-445, 1981.
15.Chai J., C. Du, J.W. Wu, S. Kyin, X. Wang, and Y. Shi. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406: 855-862, 2000.
16.Chalmers-Redman R.M., A.D. Fraser, G.W. Carlile, A. Pong, and W.G. Tatton. Glucose protection from MPP+-induced apoptosis depends on mitochondrial membrane potential and ATP synthase. Biochem Biophys Res Commun 257:440-447, 1999.
17.Chan S.W., L. Hegyi, S. Scott, N.R.Cary, P.L. Weissberg, and M.R. Bennett. Sensitivity to Fas-mediated apoptosis is determined below receptor level in human vascular smooth muscle cells. Circ Res 86: 1038-1046, 2000.
18.Cheng Y.M., C.Y. Chou, S.C. Huang, and H.C. Lin. Estrogen deficiency causes deoxyribonucleic acid damage in uterine leiomyomas cells; possible mechanism of gonadotropin-releasing hormone agonist-induced tumor shrinkage. Br J Obstet Gynaecol 108:1-8, 2001.
19.Chiang C.H., M.Y. Chang, J.J. Hsu, T.H. Chiu, K.F. Lee, T.T. Hsieh, and Y.K. Soong. Tumor vascular pattern and blood flow impedance in the differential diagnosis of leiomyoma and adenomyosis by color Doppler sonography. J Assist Reprod Genet 16:268-275, 1999.
20.Chiarugi A. Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol Sci 23:122-129, 2002.
21.Conn P. M.and W.F. Jr. Crowley. Gonadotropin-releasing hormone and its analogues. N Engl J Med 324: 93–103, 1991.
22.Coppola S., C. Nosseri, V. Maresca, and L. Ghibelli L. Different basal NAD levels determine opposite effects of poly(ADP-ribosyl)polymerase inhibitors on H2O2-induced apoptosis. Exp Cell Res 221:462-469, 1995.
23.Costatini S., P. Anserini, M. Valenzano, V. Remorgida, P.L.Venturini, and L. De Cecco. Luteinizing hormone-releasing hormone analog therapy of uterine fibroid: analysis of results obtained with burserelin administered intranasally and goserelin administered subcutaneously as a monthly depot. Eur J Obstet Gynecol Reprod Biol 37:63-69, 1990.
24.Cramer S.F. and A. Patel. The frequency of uterine leiomyomas. Am J Clin Pathol 94:435-438,1990.
25.De Leo V., A. la Marca, G. Morgante, F.M. Severi, and F. Petraglia. Administration of somatostatin analogue reduces uterine and myoma volume in women with uterine leiomyomata. Fertil Steril 75:632-633, 2001.
26.Deligdisch L., S. Hirschmann, and A. Altchek. Pathologic changes in gonadotropin releasing hormone agonist analogue treated uterine leiomyomata. Fertil Steril 67:837-841, 1997.
27.de Murcia G., V. Schreiber, M. Molinete, B. Saulier, O. Poch, M. Masson, C. Niedergang, and J. Menissier de Murcia. Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem138: 15-24, 1994.
28.Desbarats J., and M.K. Newell. Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 6:920-923, 2000.
29.Dixit, V.M. Caspases: intracellular signaling by proteolysis. Cell 91 443–446, 1997.
30.Earnshaw W.C., L.M. Martins, and S.H. Kaufmann. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383-424, 1999.
31.Eguchi Y., S. Shimizu, and Y. Tsujimoto. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835-1840, 1997.
32.Enari M., H. Sakahira, H. Yokoyama, K. Okawa, A. Iwamatsu, and S. Nagata. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43-50, 1998.
33.Endres M., Z.Q. Wang, S. Namura, C. Waeber, and M.A. Moskowitz. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 1711:1143-1151, 1997.
34.Eliasson M.J., K. Sampei, A.S. Mandir, P.D. Hurn, R.J. Traystman, J. Bao, A. Pieper, Z.Q. Wang, T.M. Dawson, S.H. Snyder, and V.L. Dawson. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 10:1089-1095, 1997.
35.Fadok V.A., J.S. Savill, C. Haslett, D.L. Bratton, D.E. Doherty, P.A. Campbell, and P.M. Henson. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol 149:4029-4035, 1992.
36.Faridi J, Fawcett J, Wang L, Roth RA. Akt promotes increased mammalian cell size by stimulating protein synthesis and inhibiting protein degradation. Am J Physiol Endocrinol Metab 285:E964-E972, 2003.
37.Feldenberg L.R., S. Thevananther, M. del Rio, M. de Leon, and P. Devarajan. Partial ATP depletion induces Fas- and caspase-mediated apoptosis in MDCK cells. Am J Physiol 276:F837-F846, 1999.
38.Ferrari D., A. Stepczynska, M. Los, S. Wesselborg, and K. Schulze-Osthoff. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis. J Exp Med 188:979-984, 1998.
39.Finkel E. The mictochondion: Is it central to apoptosis? Science 292:624-626, 2001.
40.Fletcher J.A., C.C. Morton, K. Pavelka, and Lage J.M. Chromosome aberrations in uterine smooth muscle tumors: potential diagnostic relevance of cytogenetic instability. Cancer Res 50: 4092-4097, 1990.
41.French L.E., M. Hahne, I. Viard, G. Radlgruber, R. Zanone, K. Becker, C. Muller, and J. Tschopp. Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol 133:335-343, 1996.
42.Friedman A.J., R.L. Barbier, B.R. Benacerraf, and I. Schieff. Treatment of leiomyomata with intranasal or subcutaneous leuprolide, a gonadotropin-releasing hormone agonist. Fertil Steril 48:560-564, 1987.
43.Friedman A.J., S.M. Lobel, M.S. Rein, and R.L. Barbieri. Efficacy and safety considerations in women with uterine leiomyomas treated with gonadotropin-releasing hormone agonists: the estrogen threshold hypothesis. Am J Obstet Gynecol 163:1114-1119,1990.
44.Goldberg M.A., S.P. Dunning, and H.F. Bunn. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412-1415, 1988.
45.Guo F., R. Nimmanapalli, S. Paranawithana, S. Wittman, D. Griffin, P. Bali, E. O'Bryan, C. Fumero, H.G. Wang, and K. Bhalla. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99:3419-3426, 2002.
46.Ha H.C., and S.H. Snyder. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96:13978-13982, 1999.
47.Hall S.E., J.S. Savill JS, P.M. Henson, and C. Haslett. Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-specific lectin. J Immunol 153:3218-3227.
48.Hayaishi O., and K. Ueda. Poly(ADP-ribose) and ADP-ribosylation of proteins. Annu Rev Biochem 46:95-116, 1997.
49.Healy D.L., and B.J. Vollenhoven. The role of GnRH agonists in the treatment of uterine fibroids. Br J Obstet Gynaecol 99 Suppl 7:23-26, 1992.
50.Hendrickson M.R. and R.L. Kempson. Pure mesenchymal neoplasms of the uterine corpus. In: Fox H. (ed) Haines & Taylor Obstetrical and Gynaecological Pathology, 4th edition. Churchill Livingstone, New York, pp 519-586.
51.Higashijima T., A. Kataoka, T. Nishida, and M. Yakushiji. Gonadotropin-releasing hormone agonist therapy induces apoptosis in uterine leiomyoma. Eur J Obstet Gynecol Reprod Biol 168:169-173, 1996.
52.Horvitz H.R., S. Shaham, and M.O. Hengartner. The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 59:377-85, 1994.
53.Huang S.C., C.Y. Chou, Y.S. Lin, Y.C. Tsai, K.F. Hsu, C.H. Liu, and K.E. Huang. Enhanced deoxyribonucleic acid damage and repair but unchanged apoptosis in uterine leiomyomas treated with gonadotropin-releasing hormone agonist. Am J Obstet Gynecol 177:417-424,1997.
54.Huang S.C., M.J.Tang, K.F. Hsu, Y.M. Cheng, and C.Y. Chou. Fas and its ligand, caspases, and Bcl-2 expression in GnRH agonist-treated uterine leiomyoma. J Clin Endocrinol Metab 87:4580-4586, 2002.
55.Huckle W.R. and P.M. Conn. Molecular mechanism of gonadotropin releasing hormone action. II. The effector system. Endocr Rev 9: 387–395, 1988.
56.Imai A., A. Takagi, S. Horibe, H. Takagi, and T. Tamaya. Evidence for tight coupling of gonadotropin-releasing hormone receptor to stimulated Fas ligand expression in reproductive tract tumors: possible mechanism for hormonal control of apoptotic cell death. J Clin Endocrinol Metab 83: 427-431, 1998.
57.Ito F., N. Kawamura, T. Ichimura, A. Tsujimura, O. Ishiko and S. Ogita. Utrastructural comparison of uterine leiomyoma cells from the same myoma nodule before and after GnRH-agonist treatment. Fertil Steril 75: 125-130, 2001.
58.Itoh N., S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233-243, 1991.
59.Jacobson M.D., G.I. Evan. Apoptosis. Breaking the ICE. Curr Biol 4:337-340, 1994.
60.Kass G.E., J.E. Eriksson, M. Weis, S. Orrenius, and S.C. Chow. Chromatin condensation during apoptosis requires ATP. Biochem J 318:749-752, 1996.
61.Kaufmann S.H., S. Desnoyers, Y. Ottaviano, N.E. Davidson, and G.G. Poirier. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976-3985, 1993.
62.Kawaguchi K., S. Fujii, I. Konishi, H. Okamura, and T. Mori. Ultrastructural study of cultured smooth muscle cells from uterine leiomyoma and myometrium under the influence of sex steroids. Gynecol Oncol 21:32-41,1985.
63.Kawaguchi K., S. Fujii, I. Konishi, Y. Nanbu, H. Nonogaki, and T. Mori. Mitotic activity in uterine leiomyomas during the menstrual cycle. Am J Obstet Gynecol 160:637-641,1989.
64.Kerr J.F., A.H. Wyllie, and A.R. Currie. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257, 1972.
65.Kidd VJ. Proteolytic activities that mediate apoptosis. Annu Rev Physiol 60:533-573, 1998.
66.Kiener P.A., P.M. Davis, B.M. Rankin, S.J. Klebanoff, J.A. Ledbetter, G.C. Starling GC, and W.C. Liles. Human monocytic cells contain high levels of intracellular Fas ligand: rapid release following cellular activation. J Immunol 159: 1594-1598, 1997.
67.Killam A.P., C.R. Rosenfeld, F.C. Battaglia, E.L. Makowski, and G. Meschia. Effect of estrogens on the uterine blood flow of oophorectomized ewes. Am J Obstet Gynecol 115:1045-1052,1973.
68.Kim T.H., Y. Zhao, M.J. Barber, D.K. Kuharsky, and X.M. Yin. Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J Biol Chem 275:39474-39481, 2000.
69.Klaidman L.K., S.K. Mukherjee, T.P. Hutchin, and J.D. Adams. Nicotinamide as a precursor for NAD+ prevents apoptosis in the mouse brain induced by tertiary-butylhydroperoxide. Neurosci Lett 206:5-8, 1996.
70.Kohn AD, Barthel A, Kovacina KS, Boge A, Wallach B, Summers SA, Birnbaum MJ, Scott PH, Lawrence JC Jr, Roth RA. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem 273: 11937-11943, 1998.
71.Kothakota S., T. Azuma, C. Reinhard, A. Klippel, J. Tang, K. Chu, T.J. McGarry, M.W. Kirschner, K. Koths, D.J. Kwiatkowski, and L.T. Williams. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294-298, 1997.
72.Krammer P.H. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv. Immunol 71:163-210, 1999.
73.Kumar S., and D.L. Vaux. Apoptosis. A cinderella caspase takes center stage. Science 297:1290-1291, 2002.
74.Kurjak A., and S. Kupesic. Ovarian senescence and its significance on uterine and ovarian perfusion. Fertil Steril 64:532-537, 1995.
75.LaCasse E.C., S. Baird, R.G. Korneluk, and A.E. Mackenzie. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17:3247-3259, 1998.
76.Lantta M., J. Karkkainen, and P. Lehtovirta. Progesterone and estradiol receptors in the cytosol of the human uterine artery. Am J Obstet Gynecol.147: 627-633, 1983.
77.Lautier D., J. Lagueux, J. Thibodeau, L. Menard, and G.G. Poirier. Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell Biochem 122:171-193, 1993.
78.Lecker SH, Solomon V, Price SR, Kwon YT, Mitch WE, Goldberg AL. Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J Clin Invest 104:1411-1420, 1999.
79.Leist M., B. Single, A.F. Castoldi, S. Kuhnle, and P. Nicotera. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481-1486, 1997.
80.Leist M., B. Single, H. Naumann, E. Fava, B. Simon, S. Kuhnle, and P. Nicotera. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp Cell Res 249:396-403, 1999.
81.Lelli J.L. Jr., L.L. Becks, M.I. Dabrowska, and D.B. Hinshaw. ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Radic Biol Med 25:694-702, 1998.
82.Letterie G.S., C.C. Coddington, C.A.Winkel, T.H. Shawker, D.L. Loriaux, and R.L.Collins. Efficacy of a gonadotropin-releasing hormone agonist in the treatment of uterine leiomyomata: long-term follow-up. Fertil Steril 51:951-956, 1989.
83.Li H., H. Zhu, C.J. Xu, and J. Yuan. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491-501, 1998.
84.Lieberthal W., S.A. Menza SA, and J.S. Levine. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol 274:F315-F327, 1998.
85.Liu C.H., Y.S. Lin, C.C. Lin, C.C. Tzeng, and C.Y. Chou. Medical treatment of uterine myoma with long-acting gonadotropin-releasing hormone agonist prior to myomectomy. J Formosan Med Assoc 92:650-654, 1993.
86.Liu X., H. Zou, C. Slaughter, and X. Wang. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175-184, 1997.
87.Love S., R. Barber, and G.K. Wilcock. Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Brain 122:247-253, 1999.
88.Lowin B., M. Hahne, C. Mattmann, and J.Tschopp. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370: 650-652, 1994.
89.Lumsden M.A., C.P.West, T. Bramley, L. Rumgay, and T. Baird. The binding of epidermal growth factor to human uterus and leiomyomata in women rendered hypoestrogenic by continuous administration of an LHRH agonist. Br J Obstet Gynaecol 95:1299-1304, 1988.
90.Mandir A.S., S. Przedborski, V. Jackson-Lewis, Z.Q. Wang, C.M. Simbulan-Rosenthal, M.E. Smulson, B.E. Hoffman, D.B. Guastella, V.L. Dawson, and T.M. Dawson. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 96:5774-5779, 1999.
91.Martin S.J., and D.R. Green. Protease activation during apoptosis: death by a thousand cuts? Cell 82:349-352, 1995.
92.Martinez-Lorenzo M.J. , M.A. Alava, A. Anel, A. Pineiro, and J. Naval. Release of preformed Fas ligand in soluble form is the major factor for activation-induced death of Jurkat T cells. Immunology 89:511-517, 1996.
93.Matsuo H., T. Maruo, and T. Samoto. Increased expression of Bcl-2 protein in human uterine leiomyoma and its up-regulation by progesterone. J Clin Endocrinol Metab 82: 293-299, 1997.
94.Matta W.H.M., I.Stabile, R.W. Shaw, and S. Campell. Doppler assessment of uterine blood flow changes in patients with fibroids receiving gonadotropin-releasing hormone agonist buserelin. Fertil Steril 46:1083-1085, 1988.
95.Meloni A.M., U. Surti, A.M. Contento, J. Davare, and A.A. Sandberg. Uterine leiomyomas: cytogenetic and histologic profile. Obstet. Gynecol 80: 209-217, 1992.
96.Mehmet H. Caspases find a new place to hide. Nature 403: 29-30, 2000.
97.Mitsiades N., V. Poulaki, V. Kotoula, A. Leone, and M. Tsokos. Fas ligand is present in tumors of the Ewing's sarcoma family and is cleaved into a soluble form by a metalloproteinase. Am J Pathol 153: 1947-1956,1998.
98.Mizutani T., A. Sugihara, K. Nakamuro, and N. Terada. Suppression of Cell Proliferation and Induction of Apoptosis in Uterine Leiomyoma by Gonadotropin-Releasing Hormone Agonist (Leuprolide Acetate). J Clin Endocrinol Metab 83:1253-1255, 1998.
99.Mortimore GE, Ward WF. Behavior of the lysosomal system during organ perfusion. An inquiry into the mechanism of hepatic proteolysis. Front Biol 45:157-184, 1976.
100.Muzio M., A.M. Chinnaiyan, F.C. Kischkel, K. O'Rourke, A. Shevchenko, J. Ni, C. Scaffidi, J.D. Bretz, M. Zhang, R. Gentz, M. Mann, P.H. Krammer, M.E. Peter, and V.M. Dixit. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell 85: 817-827, 1996.
101.Nagayama T., R.P. Simon, D. Chen, D.C. Henshall, W. Pei, R.A. Stetler, and J. Chen. Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J Neurochem 74:1636-1645, 2000.
102.Nakagawa T., H. Zhu, N. Morishima, E. Li, J. Xu, B.A. Yankner, and J. Yuan. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98-103, 2000.
103.Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028-1042.1999.
104.Nicotera P., M. Leist, and E. Ferrando-May. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102-103:139-42, 1998.
105.Nicotera P., M. Leist, and E. Ferrando-May. Apoptosis and necrosis: different execution of the same death. Biochem Soc Symp 66:69-73, 1999.
106.O'Connell J., M.W. Bennett, G.C. O'Sullivan, J.K. Collins, and F. Shanahan The Fas counterattack: cancer as a site of immune privilege. Immunol Today 20:46-52, 1999.
107.Oei S.L., J. Griesenbeck, M. Schweiger, and M. Ziegler. Regulation of RNA polymerase II-dependent transcription by poly(ADP-ribosyl)ation of transcription factors. J. Biol. Chem. 273: 31644-31647, 1998.
108.Ono K., and J. Han. The p38 signal transduction pathway: activation and function. Cell Signal 12:1-13, 2000.
109.Owen-Schaub L.B., R. Radinsky, E. Kruzel, K. Berry, and S. Yonehara. Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res 54:1580-1586, 1994.
110.Pairleitner H., H. Steiner, G. Hasenoehrl, and A. Staudach. Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization. Ultrasound Obstet Gynecol 14:139-143, 1999.
111.Pandis N., S. Heim, G. Bardi, U.M. Floderus, H. Willen, N. Mandahl, and F. Mitelman. Chromosome analysis of 96 uterine leiomyomas. Cancer Genet Cytogenet 55:11-18, 1991.
112.Paroni G., C. Henderson, C. Schneider, and C. Brancolini. Caspase-2 can trigger cytochrome C release and apoptosis from the nucleus. J Biol Chem 277:15147-15161, 2002.
113.Pepato MT, Migliorini RH, Goldberg AL, Kettelhut IC.Role of different proteolytic pathways in degradation of muscle protein from streptozotocin-diabetic rats. Am J Physiol 271:E340-E347, 1996.
114.Pieper A.A., T. Walles, G. Wei, E.E. Clements, A. Verma, S.H. Snyder, and J.L. Zweier. Myocardial postischemic injury is reduced by polyADPripose polymerase-1 gene disruption. Mol Med 6:271-82, 2000.
115.Pimentel-Muinos F.X. and B. Seed. Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity 11:783-793, 1999.
116.Pirhonen J.P., M.H. Vuento, J.I. Makinen, and T.A. Salmi. Long-term effects of hormone replacement therapy on the uterus and on uterine circulation. Am J Obstet Gynecol 168:620-630,1993.
117.Pitti R.M., S.A. Marsters, D.A. Lawrence, M. Roy, F.C. Kischkel, P. Dowd, A. Huang, C.J. Donahue, S.W. Sherwood, D.T. Baldwin, P.J. Godowski, W.I. Wood, A.I. Gurney, K.J. Hillan, R.L. Cohen, A.D. Goddard, D. Botstein, and A. Ashkenazi. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396:699-703, 1998.
118.Raff M.C. Social controls on cell survival and cell death. Nature 356:397-400, 1992.
119.Rao L., D. Perez, and E. White. Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135:1441-1455, 1996.
120.Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 124:1-6, 1994.
121.Rein M.S., A.J. Friedman, M.R. Pandian, and L.J. Heffner. The secretion of insulin-like growth factors I and II by explant culture of fibroids and myometrium from women treated with gonadotropin-releasing hormone agonist. Obstet Gynecol 76:388-394, 1990.
122.Reissmann T., R. Felberbaum, K. Diedrich, J. Engel, A.M. Comaru-Schally, and A.V. Schally. Development and applications of luteinizing hormone-releasing hormone antagonists in the treatment of infertility: an overview. Hum Reprod 10:1974-1981, 1995.
123.Rescigno M., V. Piguet, B. Valzasina, S. Lens, R. Zubler, L. French, V. Kindler, J. Tschopp, and P. Ricciardi-Castagnoli. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction. A new role for fas ligand in inflammatory responses. J Exp Med 192:1661-1668, 2000.
124.Richter C., M. Schweizer, A. Cossarizza, and C. Franceschi. Control of apoptosis by the cellular ATP level. FEBS Lett 378:107-110, 1996.
125.Robertson J.D., M. Enoksson, M. Suomela, B. Zhivotovsky, and S. Orrenius. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277:29803-29809, 2002.
126.Rozzo S.J., C.G. Drake, B.L. Chiang, M.E. Gershwin, and B.L.Kotzin. Evidence for polyclonal T cell activation in murine models of systemic lupus erythematosus. J Immunol 153:1340-1351, 1994.
127.Sachs L., and J. Lotem. Control of programmed cell death in normal and leukemic cells: new implications for therapy. Blood 82:15-21, 1993.
128.Sakahira H., M. Enari, and S. Nagata. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96-99, 1998.
129.Sakata K., A. Sakata, N. Vela-Roch, R. Espinosa, A. Escalante, L. Kong, T. Nakabayashi, J. Cheng, N. Talal, and H. Dang. Fas (CD95)-transduced signal preferentially stimulates lupus peripheral T lymphocytes. Eur J Immunol 28:2648-2660, 1998.
130.Schaper J., F. Schwarz, H. Kittstein, G. Stammler, B. Winkler, H. Scheld, and F. Hehrlein. The effects of global ischemia and reperfusion on human myocardium: quantitative evaluation by electron microscopic morphometry. Ann Thorac Surg 33:116-122, 1982.
131.Schreiber V., D. Hunting, C. Trucco, B. Gowans, D. Grunwald, G. De Murcia, and J.M. De Murcia. A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Natl Acad Sci U S A 92:4753-4757, 1995.
132.Schulze-Osthoff K., D. Ferrari, M. Los, S. Wesselborg, and M.E. Peter. Apoptosis signaling by death receptors. Eur J Biochem 254:439-459, 1998.
133.Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A 95:7772-7777, 1998.
134.Shall S., and G. de Murcia. Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res 460:1-15, 2000.
135.Shinohara H., H. Yagita, Y. Ikawa, and N. Oyaizu. Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res 60: 1766-1772, 2000.
136.Simm A., G. Bertsch, H. Frank, U. Zimmermann, and J. Hoppe. Cell death of AKR-2B fibroblasts after serum removal: a process between apoptosis and necrosis. J Cell Sci 110:819-828, 1997.
137.Solary E., B. Eymin, N. Droin, and M. Haugg. Proteases, proteolysis, and apoptosis. Cell Biol Toxicol 14:121-132, 1998.
138.Spong C.Y., R. Sinow, R. Renslo, E. Cabus, J. Rutgers, and O.A. Kletzky. Induced hypoestrogenism increases the arterial resistance index of leiomyomata without affecting uterine or carotid arteries. J Assist Reprod Genet 12:338-341, 1995.
139.Stefanelli C., F. Bonavita, I. Stanic', G. Farruggia, E. Falcieri, I. Robuffo, C. Pignatti, C. Muscari, C. Rossoni, C. Guarnieri, and C.M. Caldarera. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis. Biochem J 322:909-917, 1997.
140.Stroh C., and K. Schulze-Osthoff. Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ 5:997-1000, 1998 .
141.Suzuki A., M. Enari, Y. Eguchi, A. Matsuzawa, S. Nagata, Y. Tsujimoto, and T. Iguchi. Involvement of Fas in regression of vaginal epithelia after ovariectomy and during an estrous cycle. EMBO J 15: 211-215, 1996.
142.Szabo G., S. Bahrle, N. Stumpf, K. Sonnenberg, E.E. Szabo, P. Pacher, T. Csont, R. Schulz, T.J. Dengler, L. Liaudet, P.G. Jagtap, G.J. Southan, C.F. Vahl, S. Hagl, and C. Szabo. Poly(ADP-Ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ Res 90:100-106, 2002.
143.Tewari M., L.T. Quan, K. O'Rourke, S. Desnoyers, Z. Zeng, D.R. Beidler, G.G. Poirier, G.S. Salvesen, and V.M. Dixit. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801-809, 1995.
144.Thornberry NA, and Y. Lazebnik. Caspases: enemies within. Science 281:1312-1316, 1998.
145.Thornberry N.A., T.A. Rano, E.P. Peterson, D.M. Rasper, T. Timkey, M. Garcia-Calvo, V.M. Houtzager, P.A. Nordstrom, S. Roy, J.P. Vaillancourt, K.T. Chapman, and D.W. Nicholson. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907-17911, 1997.
146.Vaux D.L., G. Haecker, and A. Strasser. An evolutionary perspective on apoptosis. Cell 76:777-779, 1994.
147.Virag L., and C. Szabo. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375-429, 2002.
148.Vogelstein B., E.R. Fearon, S.R. Hamilton, A.C. Preisinger, H.F. Willard, A.M. Michelson, A.D. Riggs, and S.H. Orkin. Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res 47:4806-4813, 1987.
149.Vollenhoven B.J., A.S. Lawrence, and D.L. Healy. Uterine fibroids: a clinical review. Br J Obstet Gynaecol 97:285-298, 1990.
150.Vu K., D.L. Greenspan, T.C. Wu, H.A. Zacur, and R.J. Kurman. Cellular proliferation, estrogen receptor, progesterone receptor, and bcl-2 expression in GnRH agonist-treated uterine leiomyomas. Hum Pathol 29:359-363, 1998.
151.Wang G., T.K. Hazra, S. Mitra, H.M. Lee, and E.W. Englander. Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Res 28:2135-2140, 2000.
152.Wang Y., H. Matsuo, O. Kurachi, and T. Maruo. Down-regulation of proliferation and up-regulation of apoptosis by gonadotropin-releasing hormone agonist in cultured uterine leiomyoma cells. Eur J Endocrinol 146:447-456, 2002.
153.Watson G.M., and W.J. Walker. Uterine artery embolisation for the treatment of symptomatic fibroids in 114 women: reduction in size of the fibroids and women's views of the success of the treatment. Brit J Obstet Gynaecol 109:129-135, 2002.
154.Weeks A.D., S.R. Duffy, and J.J. Walker. Uterine ultrasonographic changes with gonadotropin-releasing hormone agonists. Am J Obstet Gynecol 180:8-13,1999.
155.Wei M.C., W.X. Zong, E.H. Cheng, T. Lindsten, V. Panoutsakopoulou, A.J. Ross, K.A. Roth, G.R. MacGregor, C.B. Thompson, and S.J. Korsmeyer. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727-730, 2001.
156.Weise J., S. Isenmann, and M. Bahr. Increased expression and activation of poly(ADP-ribose) polymerase (PARP) contribute to retinal ganglion cell death following rat optic nerve transection. Cell Death Differ 8:801-807, 2001.
157.West C.P., M.A. Lumsden, S. Lawson, J. Williamson, and T. Baird. Shrinkage of uterine fibroids during therapy with goserelin (Zoladex), a luteinizing hormone-releasing hormone agonist administered as a monthly subcutaneous depot. Fertil Steril 48:45-51, 1987.
158.Xerri L. E. Devilard. J. Hassoun. C. Mawas, and F. Birg. Fas ligand is not only expressed in immune privileged human organs but is also coexpressed with Fas in various epithelial tissues. Molecular Pathology 50: 87-91, 1997.
159.Yonehara S., A. Ishii, and M. Yonehara. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169: 1747-1756, 1989.
160.Zhang J., V.L. Dawson, T.M. Dawson, and S.H. Snyder. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687-689, 1994.
161.Ziegler M., and S.L.Oei. A cellular survival switch: poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. Bioessays 23:543-548, 2001.