| 研究生: |
蔡佳銘 Tsai, Chia-Ming |
|---|---|
| 論文名稱: |
RFID 環境下病人行為模式之探勘與比較 Mining Behavior Patterns of Patients in RFID Environments |
| 指導教授: |
曾新穆
Tseng, Vincent S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | RFID 、資料探勘 、行為模式 、關聯樣式 、序列型樣 、差異性計算. |
| 外文關鍵詞: | Association Pattern, Sequential Pattern, RFID, Variation., Data mining, Behavior model, Behavior pattern |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中我們提出一個在RFID的環境架構下觀察使用者兩段時期行為變化性的方法,一開始先以欲觀察的檢查點將使用者連續的移動紀錄分成兩段,然後利用資料探勘技術針對兩段時期的記錄分別進行多種常見的行為模式探勘以建立出使用者的行為模組,最後以計算模組之間差異性的方式來分析行為的變化性並且以數值量化出變化的程度。在本篇的研究方法中,我們共使用了資料探勘領域中最為熱門的關聯樣式與序列型樣,以及位移頻率與速度三種常見的行為模式,並且提出各自的差異性計算方法,對於兩段時期的變化每種行為模式都會算出一個代表的數值,最後再以權重分配的方式整合就可得到模組之間的整體差異性。在過去的研究中,基於多種的研究目的,已有許多學者提出數種針對關聯樣式以及序列型樣的差異性計算方法,本篇中我們是以較為常見的方法加以修改,再加入新的行為模式的差異性計算,就目前所知,本篇是最早提出在RFID環境架構下,藉由整合多種行為模式探勘來計算以及分析使用者變化性的研究,所以在本篇論文的後半段,我們也會利用貼近真實情況的模擬環境及一系列相關的實驗,來證明這些計算方式是合理的。
In this paper, we propose a novel hybrid approach for analysis of patient behaviors by mining the streamed movement log obtained in RFID environments. The proposed approach can discover the regular behavior models of patients using data mining techniques. Moreover, the variation between two behavior models under different periods can also be obtained. We propose three kinds of novel variation evaluation strategies, namely association pattern, sequential pattern, and location change frequency/velocity that utilize the evaluation result to objectively evaluate the variation between two periods on patients. To our best knowledge, this is the first work on evaluating the behavior variation of patients by mining behavior patterns in RFID-based patient monitoring environments. Through a series of experimental evaluations, the proposed hybrid method is shown to be promisingly effective under different system conditions.
參考文獻
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 207–216, Washington, D.C, May 1993.
[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of the International Conference on Very Large Data Bases, pages 478-499, San Jose, CA, June 1994.
[3] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the International Conference on Data Engineering, pages 3-14, Taipei, Taiwan, March, 1995.
[4] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. Journal of Molecular Biology, vol. 215, pages 403-410, October, 1990.
[5] T.S. Barger, D.E. Brown, and M. Alwan. Health-status monitoring through analysis of behavioral patterns. IEEE Transactions on Systems, Man, and Cybernetics, vol. 35, pages 22-27, 2005.
[6] J. Borges and M. Levene. Data Mining of User Navigation Patterns. In Proceedings of the Web Usage Analysis and User Profiling Workshop, pages 31-36, San Diego, CA, August, 1999.
[7] M. Capelle, C. Masson, and J.F. Boulicaut. Mining Frequent Sequential Patterns under a Similarity Constraint. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, vol. 2412, pages 1-6, August, 2002.
[8] M.C. Chen, A.L. Chiu, and H.H. Chang. Mining changes in customer behavior in retail marketing. Expert Systems with Applications, vol. 28, pages 773-781, May, 2005.
[9] M.S. Chen, J.S. Park, and P.S. Yu. Efficient Data Mining for Path Traversal Patterns. IEEE Transactions on Knowledge and Data Engineering, vol. 10, pages 209-221, April, 1998.
[10] David W. Cheung, J. Han, Vincent T.Y. Ng, Ada W. Fu, and Y. Fu. Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. In Proceedings of the International Conference on Data Engineering, pages 106-114, New Orleans, Louisiana, USA, February, 1996.
[11] David W. Cheung, Vincent T.Y. Ng, and Benjamin W. Tam. Maintenance of Discovered Knowledge: A Case in Multi-Level Association Rules. In Proceedings of the International Conference on Knowledge Discovery and Data Mining, pages 307-310, Oregon, USA, August 1996.
[12] G. Dong and J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and Differences. In Proceedings of the International Conference on Knowledge Discovery and Data Mining, San Diego, USA, pages 43-52, August, 1999.
[13] H. Fanberg. The RFID Revolution. Marketing Health Services, vol. 24, pages 33-34, January, 2004.
[14] V. Ganti, J. Gehrke, and R. Ramakrishnan. A Framework for Measuring Changes in Data Characteristics. In Proceedings of the the ACM SIGACT SIGMODSIGART Symposium on Principles of Database Systems, pages 126-137, Philadelphia, Pennsylvania, May, 1999.
[15] J. Han, H. Gonzalez, X. Li, and D. Klabjan. Warehousing and Mining Massive RFID Data Sets. In Proceedings of the International Conference on Advanced Data Mining and Applications, pages 1-18, Xi'An, China, August 2006.
[16] J. Han, J. Pei, Y. Yin, and R. Mao. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 1-12, Dallas, TX, May 2000.
[17] J. Hightower and G. Borriello. SpotON:An Indoor 3D Location Sensing Technology Based on RF Signal Strength. University of Washington, Department of Computer Science and Engineering, Seattle, WA, February, 2000.
[18] J. HighTower, C. Vakili, C. Borriello, and R. Want. Design and Calibration of the SpotON AD-Hoc Location Sensing System. University of Washington, Department of Computer Science and Engineering, Seattle, August, 2001.
[19] H.C. Kum, J.K. Chang, and W. Wang. Sequential Pattern Mining in Multi-Databases via Multiple Alignment. Data Mining and Knowledge Discovery, vol. 12, pages 151-180, May, 2006.
[20] B. Liu, W. Hsu, H.S. Han, and Y. Xia. Mining Changes for Real-Life Applications. In Proceedings of the International Conference on Data Warehousing and Knowledge Discovery, pages 337-346, London Greenwich, UK, September, 2000.
[21] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent item sets by opportunistic projection. Proceedings of the International Conference on Knowledge Discovery in Databases, pages 229-238, Edmonton, Canada, July, 2002.
[22] P. Moen. Attribute, Event Sequence, and Event Type Simarity Notions for Data Mining. PhD thesis, Department of Computer Science, University of Helsinki, Finland, February, 2000.
[23] M. Ogawa, S. Ochiai, K. Shoji, M. Nishihara, and T. Togawa. An Attempt of Monitoring Daily Activities at Home. In Proceedings of the Annual Engineering in Medicine and Biology Society Conference, pages 786-788, Chicago, IL, July, 2000.
[24] M. Ogawa and T. Togawa. Monitoring Daily Activities and Behaviors at Home by Using Brief Sensors. In Proceedings of the Annual International IEEE Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, pages 611-614, Lyon, France, October, 2000.
[25] B. Padmanabhan and A. Tuzhilin. Unexpectedness as a Measure of interestingness in knowledge discovery. Decision Support Systems, vol. 27, pages 303-318, December, 1999.
[26] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In Proceedings of the International Conference on Database Theory, pages 398-416, Jerusalem, Israel, January, 1999.
[27] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth. In Proceedings of the International Conference of Data Engineering, pages 215-224, Dusseldorf, Germany, April, 2001.
[28] W.C. Peng and M.S. Chen. Exploring User Moving Patterns to Improve the Allocation of Shared Data in a Mobile Computing Environment. In Proceedings of the International Conference on Mobile Data Management , Singapore, January, 2002.
[29] W.C. Peng and M.S. Chen. Developing Data Allocation Schemes by Incremental Mining of User Moving Patterns in a Mobile Computing System. IEEE Transactions On Knowledge And Data Engineering, vol. 15, February, 2003.
[30] H.S. Song, J.K. Kim, and S.H. Kim. Mining the change of customer behavior in an internet shopping mall. Expert Systems with Applications, vol. 21, pages 157-168, October, 2001.
[31] S.W. Wang, W.H. Chen, C.S. Ong, L. Liu, and Y.W. Chuang. RFID Application in Hospitals: A Case Study on a Demonstration RFID Project in a Taiwan Hospital. In Proceedings of the Annual Hawaii International Conference on System Sciences, vol. 8, pages 184a, January, 2006.
[32] X. Wu, C. Zhang, S. Zhang. Database classification for multi-database mining. Information Systems, vol. 30, pages 71-88, March, 2005.
[33] D. Xin, J. Han, X. Yan, and H. Cheng. Mining Compressed Frequent-Pattern Sets. In Proceedings of the International Conference on Very Large Data Bases, pages 709-720, Trondheim, Norway, August, 2005.
[34] Mental Health Center of National Cheng Kung University Hospital. URL: http://www.carehouse.org.tw/