| 研究生: |
吳彥摩 Wu, Yen-Mo |
|---|---|
| 論文名稱: |
應用SWMM模擬氣候變遷下擬二維複合淹水之影響 Quasi-two-dimensional Simulation of Compound Flooding Using Storm Water Management Model Under Climate Change |
| 指導教授: |
張駿暉
Jang, Jiun-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 氣候變遷 、複合淹水 、雨水管理模式(SWMM) 、擬二維水理模式 、頻率分析 |
| 外文關鍵詞: | climate change, Compound Flooding, Storm Water Management Model (SWMM), Quasi-two-dimensional hydrological model, Frequency analysis |
| 相關次數: | 點閱:49 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球暖化的影響下,隨著暴潮和強降雨事件的頻繁發生,全球各地的沿海地區面臨著嚴重的「複合淹水」(Compound Flooding)問題,並且台灣位於太平洋颱風主要路徑上,在颱風造成的強降雨與暴潮的相互影響下,加劇了沿海地區複合淹水的嚴重性。本研究利用美國環保署所開發的一維SWMM(Storm Water Management Model)模式,以元件的方式將研究區域內部進行建模,結合擬二維概念,模擬氣候變遷下的複合淹水情形。研究採用5種不同的GCM進行模擬,並將結果區分不同時期進行分析,分別為短期、中期、中長期以及長期,各時期再以不同淹水深度作為劃分,將深度0.3 m、0.5 m、1.0 m以及2.0 m以上的淹水面積進行趨勢分析以及頻率分析,並納入基期的模擬結果作為比較對象。
研究結果顯示,在未來時期研究區域的淹水面積呈現明顯增長的趨勢,各時期的結果則呈現各自不同的趨勢。在淹水面積與基期的變化上,不同GCM在各時期的淹水面積變化如下,短期(2021 ~ 2040年),各GCM平均淹水面積相較於基期增加約8.54 %;中期(2041 ~ 2060年),各GCM平均淹水面積增加約16.54 %;中長期(2061 ~ 2080年)GCM平均淹水面積增加約16.19 %;長期(2081 ~ 2100年)各GCM平均淹水面積增加約27.77 %。頻率分析的結果則說明,隨著時間的推移,累積機率分布呈現趨近的情形,並且淹水面積呈現明顯增長情況,這代表在氣候變遷的進展下,研究區域的淹水風險將顯著增高,以及未來淹水事件的範圍和嚴重性亦持續增加,需要制定更加有效的防災策略來應對未來可能發生的極端天氣事件。
本研究合理展示未來降雨量及潮位條件複合影響下,研究區域地表之淹水面積變化趨勢,可作為未來沿海地區進行複合淹水的防災減災策略擬定之參考。
Coastal regions face a growing threat of compound flooding due to climate change. This phenomenon arises from the increased frequency of storm surges and heavy rainfall events. To assess these future risks, this study utilizes the SWMM model to simulate compound flooding scenarios under climate change. Five different General Circulation Models (GCMs) are conducted the simulations. The analysis focuses on flooding trends and frequencies across four-time intervals: short-term (2021-2040), mid-term (2041-2060), mid-to-long-term (2061-2080), and long-term (2081-2100). The results indicate an increasing trend in flood areas in the future. Additionally, frequency analysis results reveal that flood risk is also gradually increasing, indicating that the extent and severity of future flooding events are expanding. This study effectively demonstrates the trends in flood area changes under the influence of rainfall and tidal conditions, enabling researchers to accurately assess the evolving risks of compound flooding in coastal regions.
Arnell, N., & Gosling, S., The impacts of climate change on river flood risk at the global scale. Climatic Change, 387-401, 134(3). (2014)
Ahmadalipour, A., Rana, A., Moradkhani, H., and Sharma, A. Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis, Theor. Appl. Climatol., 128, 71-87. (2017)
Ahmed, K., Sachindra, D. A., Shahid, S., Demirel, M. C., Chung, E.-S. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics, Hydrol. Earth Syst. Sci., 23, 4803-4824. (2019)
Avashia, V., & Garg, A., Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities. Land Use Policy, 95. (2020)
Blumberg, A., Georgas, N., Yin, L., Herrington, T., & Orton, P. Street-scale modeling of storm surge inundation along the New Jersey Hudson river waterfront. Journal of Atmospheric and Oceanic Technology, 1486-1497, 32(8). (2015)
Bisht, D., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo, M., & Panda, A. Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study. Natural Hazards, 749-776, 84(2). (2016)
Bevacqua, E., Maraun, D., Haff, I. H., Widmann, M., & Vrac, M. Multivariate statistical modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy). Hydrology and Earth System Sciences, 21(6), 2701–2723. (2017)
Bevacqua, E., Maraun, D., Vousdoukas, M., Voukouvalas, E., Vrac, M., Mentaschi, L., & Widmann, M. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Science Advances ,5(9) , eaaw5531. (2019)
Bevacqua, E., Vousdoukas, M., Zappa, G., Hodges, K., Shepherd, T., Maraun, D., Mentaschi, L., & Feyen, L. More meteorological events that drive compound coastal flooding are projected under climate change. Communications Earth and Environment, 1(1) (2020)
Bibi, T., Kara, K., Bedada, H., & Bededa, R. Application of PCSWMM for assessing the impacts of urbanization and climate changes on the efficiency of stormwater drainage systems in managing urban flooding in Robe town, Ethiopia. Journal of Hydrology: Regional Studies, 45. (2023)
Budhathoki, A., Tanaka, T., & Tachikawa, Y., Assessing extreme flood inundation and demographic exposure in climate change using large ensemble climate simulation data in the Lower Chao Phraya River Basin of Thailand., Journal of Hydrology: Regional Studies, 50. (2023)
Callaghan, D., & Hughes, M., Assessing flood hazard changes using climate model forcing. Natural Hazards and Earth System Sciences, 2459-2472, 22(8). (2022)
Directorate-General for Climate Action. How climate change is disrupting rainfall patterns and putting our health at risk. Retrieved August 3, 2023. (2023)
Ehsan, S., Ara Begum, R., Ghani Md Nor, N., & Nizam Abdul Maulud, K. Current and potential impacts of sea level rise in the coastal areas of Malaysia. IOP Conference Series: Earth and Environmental Science, (2019)
Fourier, J. Théorie analytique de la chaleur. Paris: Firmin Didot. (Reissued by Cambridge University Press, 2009; ISBN 978-1-108-00180-9). (1822)
Feng, D., Tan, Z., Xu, D., Ruby Leung, L. Understanding the compound flood risk along the coast of the contiguous United States. Hydrology and Earth System Sciences, 3911-3934, 27(21). (2023)
Ganguli, P., & Merz, B. Extreme coastal water levels exacerbate fluvial flood hazards in Northwestern Europe. Scientific reports, 9(1), 1-14. (2019)
Hussain, M., Yusof, K. W., Mustafa, M. R. U., Mahmood, R., Jia, S. Evaluation of CMIP5 models for projection of future precipitation change in Bornean tropical rainforests, Theor. Appl. Climatol., 134, 423-440. (2018)
Han, H., Kim, D., & Kim, H. Inundation Analysis of Coastal Urban Area under Climate Change Scenarios. Water (Switzerland), 14(7). (2022)
Intergovernmental Panel on Climate Change (IPCC), Climate Change 2022: Impacts, Adaptation and Vulnerability, https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/. (2022)
Irani, M.,, Nader,i M., Massah Bavani, A., Hassanzadeh, E., & Moftakhari, H. A framework for coastal flood hazard assessment under sea level rise: Application to the Persian Gulf. Journal of Environmental Management, 349. (2024)
Jang, J.H., Yu, P.S., Yeh, S.H., Fu, J.C., Huang, C.J. A probabilistic model for real time flood warning based on deterministic flood inundation mapping. Hydrol. Process. 2 6(7), 1079 1089. (2012)
Jang, J.H. An Advanced Method to Apply Multiple Rainfall Thresholds for Urban Flood Warnings. Water 7, 6056 6078. (2015)
Jang, J.H., Vohnicky, P., & Kuo, Y.L. Improvement of Flood Risk Analysis Via Downscaling of Hazard and Vulnerability Maps. Water Resources Management, 35, 2215-2230. (2021)
Jang, J., & Chang, T. Flood risk estimation under the compound influence of rainfall and tide. Journal of Hydrology, 606, 127446. (2022)
Kendall, M. Rank correlation measures. Advances in Water Resources, 23, 141-151. (1975)
Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., Son, M. Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets, Water, 10, 1793. (2018)
Kumbier, K., Carvalho, R., Vafeidis, A., & Woodroffe, C. Investigating compound flooding in an estuary using hydrodynamic modelling: A case study from the Shoalhaven River, Australia. Natural Hazards and Earth System Sciences, 463-477, 18(2). (2018)
Kusha Kumar, M., Kale, G.D., & Sharma, A. Analysis of Stormwater Drainage Network of the Central Zone in the Surat City by Using SWMM 5.1 Software. River Dynamics and Flood Hazards, pp 445–462. (2022)
Lee, Jong-Hyeong., & Yeon, Kee-Seuk. Flood Inundation Analysis using XP-SWMM Model in Urban Area. Journal of the Korean Society of Hazard Mitigation / v.8, no.5, pp. 155-161. (2008)
Lian, J., Xu, K., Ma, C. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network a case study of Fuzhou City, China. Hydrology and Earth System Sciences, 679-689, 17(2). (2013)
Leonard, M., Westra, S., Phatak, A., Lambert, M., Hurk, B., Mcinnes, K., Risbey, J., Schuster, S., Jakob, D., & Stafford Smith, M. A compound event framework for understanding extreme impacts. Wiley Interdisciplinary Reviews: Climate Change, 5(1), 113–128. (2014)
Lin, M., Sun, M., Sun, W., Fu, H., Chen, W., & Chang, C. Formulating a warning threshold for coastal compound flooding: A copula-based approach. Ecological Indicators, 162. (2024)
Mann, H.B. Non-parametric test against trend, Econometrica, 13:245-259. (1945)
Ma son, S.J. A model for assessment of weather forecasts. Aust. Meteorol. Mag. 30, 291 303. (1982)
Molnar, P. Climate change, flooding in arid environments, and erosion rates Geology, Vol. 29, pp. 1071-1074. (2001)
Milly, P., Wetherald, R.., Dunne, K., & Delworth, T. Increasing risk of great floods in a changing climate. Nature 415, 514–517 (2002)
Meehl, G. A., Arblaster, J. M., & Tebaldi, C. Understanding future patterns of increased precipitation intensity in climate model simulations Geophysical Research Letters, Vol. 32. (2005)
Montzka, S. A., Dlugokencky, E. J., & Butler, J. H. Non-CO2 greenhouse gases and climate change Nature, Vol. 476, pp. 43-50. (2011)
Myhrvold, N. P., & Caldeira, K. Greenhouse gases, climate change and the transition from coal to low-carbon electricity Environmental Research Letters, Vol. 7, pp. 014019. (2012)
Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., & Matthew, R. A. Compounding effects of sea level rise and fluvial flooding. Proceedings of the National Academy of Sciences of the United States of America, 114(37), 9785–9790. (2017)
Marsooli, R., & Wang, Y. Quantifying Tidal Phase Effects on Coastal Flooding Induced by Hurricane Sandy in Manhattan, New York Using a Micro-Scale Hydrodynamic Model. Frontiers in Built Environment, 6. (2020)
Oyelakin, R., Yang, W., & Krebs, P. Analysing Urban Flooding Risk with CMIP5 and CMIP6 Climate Projections. Water (Switzerland), 16(3). (2024)
Plass, G, N. Carbon dioxide and the climate. American Scientist., 44(4), 302–316. (1956)
Rai, P., Chahar, B., & Dhanya, C. GIS-based SWMM model for simulating the catchment response to flood events. Hydrology Research, 384-394, 48(2). (2017)
Rossman, L. A., & Huber, W. C. Storm water management model reference manual Volume II – Hydraulics. EPA/600/R-17/111. (2017)
Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau, Journal of the American Statistical Association, 63:1379-1389. (1968)
Saha, P., & Navera, U. A Study on Hydrodynamic and Short Term Flash Flood Analysis of Surma River Using Delft3D Model. Proceedings of the 3rd International Conference on Civil Engineering for Sustainable Development. (2016)
Saleh, F., Ramaswamy, V., Wang, Y., Georgas, N., Blumberg, A., & Pullen, J. A multi-scale ensemble-based framework for forecasting compound coastal-riverine flooding: The Hackensack-Passaic watershed and Newark Bay. Advances in Water Resources, 371-386, 110. (2017)
Shen, Y., Morsy, M., Huxley, C., Tahvildari, N., & Goodall, J. Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall. Journal of Hydrology, 579. (2019)
Seenu, P.Z., Venkata Rathnam, E. & Jayakumar, K.V. Visualisation of urban flood inundation using SWMM and 4D GIS. Spatial Information Research, 28, 459–467. (2020)
Shi, S., Yang, B., & Jiang, W. Numerical simulations of compound flooding caused by storm surge and heavy rain with the presence of urban drainage system, coastal dam and tide gates: A case study of Xiangshan, China. Coastal Engineering, 172. (2022)
Son, Y., Di Lorenzo, E., & Luo, J. WRF-Hydro-CUFA: A scalable and adaptable coastal-urban flood model based on the WRF-Hydro and SWMM models. Environmental Modelling and Software, 167. (2023)
Thompson, J., Sørenson, H., Gavin, H., & Refsgaard, A. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. Journal of Hydrology, 151-179, 293(1-4). (2004)
Trenberth, K. E. Changes in precipitation with climate change., Climate Research, 123-138, 47(1-2). (2011)
Takagi, H., Li, S., de Leon, M., Esteban, M., Mikami, T., Matsumaru, R., Shibayama, T., & Nakamura, R. Storm surge and evacuation in urban areas during the peak of a storm. Coastal Engineering, 1-9, 108. (2016)
Visser-Quinn, A., Beevers, L., Collet, L., Formetta, G., Smith, K., Wanders, N., Thober, S., Pan, M., & Kumar, R. Spatio-temporal analysis of compound hydro-hazard extremes across the UK. Advances in Water Resources, 130, 77–90. (2019)
Valle-Levinson, A., Olabarrieta, M., & Heilman, L. Compound flooding in Houston-Galveston Bay during Hurricane Harvey. Science of the Total Environment, 747. (2020)
Wahl, T., Jain, S., Bender, J., Meyers, S., & Luther, M. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature Climate Change, 1093-1097, 5(12). (2015)
Xu, H., Ma, C., Xu, K., Lian, J., & Long,Y. Staged optimization of urban drainage systems considering climate change and hydrological model uncertainty. Journal of Hydrology, 587. (2020)
Xu, K., Zhuang, Y., Bin, L., Wang, C., & Tian, F. Impact assessment of climate change on compound flooding in a coastal city. Journal of Hydrology, 617. (2023)
Yin, J., Lin, N., & Yu, D. Coupled modeling of storm surge and coastal inundation: A case study in New York City during Hurricane Sandy. Water Resources Research, 8685-8699, 52(11). (2016)
Yuan, J., Zheng, F., Duan, H., Deng, Z., Kapelan, Z., Savic, D., Shao, T., Huang, W., Zhao, T., & Chen, X. Numerical modelling and quantification of coastal urban compound flooding. Journal of Hydrology, 630. (2024)
Zscheischler, J., Westra, S., Hurk, B., Seneviratne, S., Ward, P., Pitman, A., AghaKouchak, A., Bresch, D., Leonard, M., Wahl, T., & Zhang, X. Future climate risk from compound events. Nature Climate Change, 8(6), 469–477. (2018)
王嘉和、游翔麟、梁益詮、王嘉瑜、張倉榮,街道及下水道之雙排水系統快速淹水模擬,農業工程學報,第65 卷第1 期。(2019)
王嘉和、王嘉瑜、游翔麟、曾千瑜、林志峰、張倉榮,地表細胞自動機快速淹水-街道集流器-雨水下水道管網之整合模擬分析:臺北市強降雨即時淹水預報平台之研發,農業工程學報,第67卷第3期。(2021)
王俊寓,林士堯(民113年2月5日),AR6氣候變遷關鍵指標資料說明文件(1.1版),[2024年5月27日],取自臺灣氣候變遷推估資訊與調適知識平台: https://tccip.ncdr.nat.gov.tw/upload/data_document/20231219151343.pdf (2024)
巫孟璇、蔡智恆、陳金諾、蔡長泰,暴潮對沿海地區淹水潛勢與淹水風險之影響,《中國土木水利工程學刊》22卷4期pp. 387-398。(2010)
林修立、童裕翔、王俊寓、林士堯(民112年1月1日),AR6統計降尺度雨量資料生產履歷(1.0 版 ),[2024年5月27日],取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_profile/20220718101540.pdf (2023)
陳韻如、徐硯庭、施虹如、林宣汝、陳偉柏、陳永明,氣候變遷衝擊下縣市災害風險評估-以台南市為例,國家災害防救科技中心。(2015)
張駿暉、吳昀達、張懿、蕭士俊,因應氣候變遷海岸韌性評估之核心技術精進-氣候變遷暴潮與降雨全耦合淹水風險模擬子(計畫三)(I) (MOST 109-2625-M-006-012),科技部補助專題研究計畫報告。(2021)
游保杉,氣候變遷對重要供水水系水源水量影響分析,經濟部水利署水利規劃試驗所。(2022)
葉振峰、葉信富、李振誥,以Mann-Kendall及Theil-Sen檢定法評估臺灣地區長期河川流量長期時空趨勢變化,中華水土保持學會年會及學術研討會論文集。(2015)
楊承道,王俊寓,林士堯(民112年1月1日),網格化觀測雨量日資料生產履歷(4.1版),[2024年5月27日],取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_profile/20220706104221.pdf (2023)
中央氣象署,CODiS氣候資料服務系統,網址 : https://codis.cwa.gov.tw/
中央氣象署,SafeOcean海象環境資訊平台,網址: https://ocean.cwa.gov.tw/V2 /data_interface/datasets
行政院數位發展部,政府資料開放平台,網址: https://data.gov.tw/
科技部「臺灣氣候變遷推估資訊與調適知識平台計畫(TCCIP)」,IPCC氣候變遷第六次評估報告「衝擊、調適與脆弱度」之科學重點摘錄與臺灣氣候變遷衝擊評析更新報告。(2022)
經濟部水利署,因應氣候變遷之海岸風險評估(1/2)。(2019)
美國國家航空暨太空總署(NASA),SEA LEVEL PROJECTION TOOL,網址 : https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool
校內:2026-07-31公開