簡易檢索 / 詳目顯示

研究生: 林彥宏
Lin, Yen-Hung
論文名稱: 單晶矽之奈米力學特性分析
Study on nanoscale mechanical behavior of monocrystalline silicon
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 171
中文關鍵詞: 單晶矽分子動力學奈米壓痕相變化配位數法則差排導電率
外文關鍵詞: Mono-crystalline Si, molecular dynamics, coordination number, Centro-symmetry Parameter, phase transformation, dislocation, Conductivity, resistance
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是以分子動力學(molecular dynamics)模擬並探討單晶矽奈米結構受應變作用後之電性性質與結構變化,模擬研究的方向針對不同維度的單晶矽材料做研究,其中包括奈米線(nanowires)與奈米塊(nanocubes)。原子間相互作用力採用Tersoff勢能與Morse勢能函數來計算,並依循牛頓運動方程式,採用Gear五階預測修正運算法來分析各個步階的分子位置、速度等相對物理量。關於矽結構的相變化,此次採用配位數法則來連續監控矽單晶奈米結構的相變行為,此方式能確保相變化的過程清楚呈現,以便追蹤金屬相矽(Si-II)產生的過程和蔓延方向,進而預測並探討矽單晶奈米結構的導電率(Conductivity),使矽材料的電性與相變關係得以詮釋。同時在奈米塊的最底層和奈米線兩側則設定為固定層,並在上下兩側施加一虛擬電源,藉此追蹤單晶矽材料受應力作用後,材料的電性變化。本研究也將以往模擬較難過濾出的bc8&R8相給過濾出來,此相的配位數和Si-I相一樣,因此不容易過濾。奈米線拉伸模擬發現:應變作用過程中,矽奈米結構內部會先產生差排(dislocation)再產生相變化。因為矽奈米結構受拉伸應變作用時,首先會藉由差排原子滑移來釋放拉伸應力,緊接著結構會重組滑移的差排原子,使其轉變成有意義的相變結構,此過程即為相變過程。於是差排原子先產生,緊接著才由相變化從後遞補。當應變施加於(011)和(111)方向矽奈米線時,必須超越材料的降伏應力使結構產生破壞後才能改變其材料電性。但是針對(001)方向來說,無需破壞整個結構即可改變電性。於是藉由應力改變材料電性的研究中,(001)方向的矽奈米線較較好的研究題材。同時發現,適度的應力作用確實能轉變矽奈米線的電性,即使將負載移除,殘留的應力仍然會產生作用並導致相變化,使材料維持在導體階段。藉由壓痕模擬發現:模型的尺度大小與半圓球探針的半徑和壓深有關,探針壓深至少要大於探針半徑的70%才可對結構造成塑性變型,此時卸載後的區域為永久殘留的塑性變型區,有利於觀察整個結構的相變化。

    Molecular dynamics (MD) simulation is adopted to examine the deformation and phase transformation of mono-crystalline Si. In this study, the inter-atomic interaction of Si atoms is modeled by Tersoff potential, while the interaction between Si atoms and diamond indenter atoms is modeled by Morse potential. The techniques of coordination number (CN) and centro-symmetry parameter (CSP) are used to monitor and elucidate the detailed mechanisms of the phase transformation throughout the loading process in which the evolution of structural phase change and the dislocation pattern can be identified. Therefore, the relationship between phase transformation and dislocation pattern can be established and illustrated. In addition, the electrical resistance and conductivity of mono-crystalline Si was evaluated by using the concept of virtual electric source during loading and unloading similar to in situ electrical measurements. Simulation results show that before the failure of the material, the dislocations are introduced first and then the phase transformation such that the total energy of the system tends to approach a minimum level. Moreover, the electrical resistance of (001)- rather than (011)- and (111)-oriented SiNW’s is changed before failure. As the stress level of the (001) SiNW reaches 24 GPa, a significant amount of metallic Si-II and amorphous phase is produced from the semiconducting Si-I phase and leads a pronounced decrease of electrical resistance. In this article, the phases of BC8 and R8, which have the same coordinate number as the phase Si-I and were difficult to distinguish from each other in previous studies, are successfully identifiedand extracted from the deformed region during unloading. As the effect of the indenter-radius size on thestructural phase transformation of mono-crystalline Si for three different crystallographically oriented surfaces is investigated. It is also found that as the onset of the plastic deformation tends to take place only as the ratio of the indentation depth to the tip radius is larger than 0.7. Under this condition the structural phase transformation can be easily observed in the residual deformed region after unloading.

    摘要 I 目錄 II 表目錄 IV 圖目錄 V 符號說明 XI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 7 1-2-1 分子動力學之文獻回顧 7 1-2-2 奈米壓痕之文獻回顧 9 1-3 研究動機與目的 12 1-4 本文架構 18 第二章 分子動力學基本原理 19 2-1 分子動力學基本假設 19 2-2 分子動力學基本理論 20 2-3 系綜觀念 22 2-4 分子間作用力 23 2-5 勢能函數 25 2-6 無因次化 32 2-7 初始速度之決定 33 2-8 預測修正法 35 2-9 截斷半徑與鄰近表列法 39 2-10 週期邊界 47 2-11 最小映像法則 48 2-12 原子級之應力 49 第三章 分子動力學數值模擬方法 51 3-1 物理模型 51 3-2 勢能函數的選擇 56 3-3 監控平衡狀態 58 3-4 缺陷及相變化理論架構 60 3-5 模擬流程圖 64 第四章 結果分析與討論 66 4-1 結構相變化探討 66 4-1-1 變型區域之結構相變化探討 66 4-1-2 壓痕過程之相變機制探討 69 4-1-3 機械特性探討 76 4-1-4 拉伸過程之相變與電性機制探討 82 4-2 奈米塊壓痕過程之綜合探討 94 4-2-1 探針形式效應探討 94 4-2-2 探針半徑效應探討 101 4-2-3 負載效應探討 108 4-2-4 壓痕面方向探討 110 4-2-5 多道次壓痕效應探討 117 4-3 奈米線拉伸過程之綜合探討 137 4-3-1 面方向探討 137 4-3-2 負載釋放效應探討 146 4-3-3 溫度效應探討 152 第五章 結論與未來展望 156 5-1結論與貢獻 156 5-2 未來展望與建議 161 參考文獻 162 自述 170 著作 171

    [1]Jacob N. Israelachvili, "Intermolecular and Surface Forces- with Applications to Colloidal and Biological Systems", Academic press, 1985.
    [2]http://www.research.ibm.com/nanoscience/manipulation.html
    [3]T. Hertel, R. Martel and P. Avouris, "Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces", J. Phys. Chem., Vol. 102, No. 6, pp. 910-915, 1998.
    [4]D. Christopher, R. Smith and A. Richter, "Atomistic modelling of nanoindentation in iron and silver", Nanotechnology, Vol. 12, No. 3, pp. 372, 2001.
    [5]北區奈米機電基礎培訓班課程講義。
    [6]J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics”, J. Chem. Phys., Vol. 18, No. 6, pp. 817-829, 1950.
    [7]B. J. Alder and T. E. Wainwright, “Studies in Molecular Dynamics. I. General Method”, J. Chem. Phys., Vol. 31, No. 2, pp. 459-466, 1959.
    [8]B. J. Alder and T. E. Wainwright, “Decay of the Velocity Autocorrelation Function”, Phys. Rev. A, Vol. 1, No. 1, pp. 18-21, 1970.
    [9]J. M. Hailie, "Molecular Dynamics Simulation Elementary Method", New York: Wiley, 1993.
    [10]M. P. Allen, D. J. Tildesley, "Compuetr Simulation of Liquids", Oxford, Claredon, 1987.
    [11]G. Ciccotti, W. G. Hover, "Molecular Dynamics Simulation of Statistical Mechanics System", Amsterdam, North Holland, 1986.
    [12]L. Verlet, “Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Physical Review, Vol. 159, No. 1, pp. 98-103, 1967.
    [13]B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations”, J. Comput. Phys., Vol. 13, No. 3, pp. 430-432, 1975.
    [14]D. C. Rapaport, “Molecular-Dynamics Study of Rayleigh-Bénard Convection”, Layered cell link, Vol. 60, No. 24, pp. 2480-2483, 1988.
    [15]G. S. Grest, B. Dünweg, and K. Kremer, “Vectorized Link Cell Fortran Code for Molecular Dynamics Simulations for a Large Number of Particles”, Comput. Phys. Commun., Vol. 55, No. 3, pp. 269-285, 1989.
    [16]H. Hertz, “Über Die Berührung Fester Elastischer Körper”, Journal für die reine und angewandte Mathematik, Vol. 92, No. pp. 156-171, 1882.
    [17]I. N. Sneddon, “The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile”, Int. J. Eng. Sci., Vol. 3, No. 1, pp. 47-57, 1965.
    [18]W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res., Vol. 7, No. 6, pp. 1564-1583, 1992.
    [19]W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology”, J. Mater. Res., Vol. 19, pp. 3-20, 2004.
    [20]R. Saha and W. D. Nix, “Soft films on hard substrates-nanoindentation of tungsten films on sapphire substrates”, Mater. Sci. Eng. A, Vol. 319, pp. 898-901, 2001.
    [21]R. Saha and W. D. Nix, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation”, Acta Materialia, Vol. 50, pp. 23-38, 2002.
    [22]E. S. Puchi-Cabrera, “A new model for the computation of the composite hardness of coated systems”, Surf. and Coat. Tech., Vol. 160, pp. 177-186, 2002.
    [23]Z. Liu, J. Sun and W. Shen, “Study of Plowing and Friction at the Surfaces of Plastic Deformed Metals”, Tribo. Inter., Vol. 35, pp. 511-522, 2002.
    [24]T. H. Fang and W. J. Chang, “Nanomechanical Properties of CopperThin Films on Different Substrates Using the Nanoindentation Technique”, Microele. Eng., Vol. 65, pp. 231-238, 2003.
    [25]H. Rafii-Tabar, “Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations”, Phys. Rep., Vol. 325, No. 6, pp. 239-310, 2000.
    [26]U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture”, Science, Vol. 248, No. 4954, pp. 454-461, 1990.
    [27]K. Komvopoulos and W. Yan, “Molecular dynamics simulation of single and repeated indentation”, J. Appl. Phys., Vol. 82, pp. 4823-4830, 1997.
    [28]J. Shimizu, H. Eda, M. Yoritsune and E. Ohmura, “Molecular Dynamics Simulation of Friction on the Atomic Scale”, Nanotechnology, Vol. 9, No. 2, pp. 118-123, 1998.
    [29]E. T. Lilleodden, J. A. Zimmerman, S. M. Foiles and W. D. Nix, “Atomistic Simulations of Elastic Deformation and Dislocation Nucleation during Nanoindentation”, J. Mech. Phys. Solids, Vol. 51, No. 5, pp. 901-920, 2003.
    [30]H. Y. Liang, C. H. Woo, H. Huang, A. H. W. Ngan and T. X. Yu, “Dislocation Nucleation in the Initial Stage During Nanoindentation”, Philos. Mag., Vol. 83, No. 31-34, pp. 3609-3622, 2003.
    [31]F. N. Dzegilenko, D. Srivastava and S. Saini, “Nanoscale Etching and Indentation of a Silicon (001) Surface with Carbon Nanotube Tips", Nanotechnology, Vol. 11, No. 3, pp. 253-257, 1999.
    [32]V. Domnich, Y. Gogotsi and S. Dub, “Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon”, Appl. Phys. Lett., Vol. 76, No. 16, pp. 2214-2216, 2000.
    [33]L. C. Zhang and H. Tanaka, “On the mechanics and physics in the nanoindentation of silicon monocrystals”, JSME Int. J. A, Vol. 42, No. 4, pp. 546-559, 1999.
    [34]W. C. D. Cheong and L. Zhang, “Effect of repeated nano-indentations on the deformation in monocrystalline silicon”, J. Mater. Sci. Lett., Vol. 19, No. 5, pp. 439-442, 2000.
    [35]W. C. D. Cheong and L. C. Zhang, “Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals Due to Nano-Indentation”, Nanotechnology, Vol. 11, pp. 173-180, 2000.
    [36]W. C. D. Cheong and L. C. Zhang, “Effect of repeated nano-indentations on the deformation in monocrystalline silicon”, Journal of Materials Science Letters, Vol. 19, No. 5, pp. 439-442, 2000.
    [37]I. Zarudi, L. C. Zhang, W. C. D. Cheong and T. X. Yu, “The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters”, Acta Mater., Vol. 53, No. 18, pp. 4795-4800, 2005.
    [38]D. E. Kim and S. I. Oh, “Atomistic Simulation of Structural Phase Transformations in Monocrystalline Silicon Induced by Nanoindentation”, Nanotechnology, Vol. 17, No. 9, pp. 2259-2265, 2006.
    [39]J. E. Bradby and J. S. Williams, “In-situ electrical characterization of phase transformations in Si during indentation”, Physical Review B, Vol. 67, pp. 85205, 2003.
    [40]B. Haberl, J. E. Bradby, S. Ruffell and J. S. Williams, “Phase transformations induced by spherical indentation in ion-implanted amorphous silicon”, J. Appl. Phys., Vol. 100, pp. 13520, 2006.
    [41]S. Ruffell, J.E. Bradby and J.S. Williams, “An in-situ electrical measurement technique via a conducting diamond tip for nano-indentation in silicon”, J. Mater. Res., Vol. 22, pp. 578, 2007.
    [42]K. Mylvaganam, L. C. Zhang, P. Eyben, J. Mody and W. Vandervorst, “Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification”, Nanotechnology, Vol. 20, pp. 305705, 2009.
    [43]Y. H. Lin, T. C. Chen, P. F. Yang, S. R. Jian and Y. S. Lai, “Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon”, Appl. Surf. Sci., Vol. 254, No. 5, pp.1415-1422, 2007.
    [44]Y. H. Lin and T. C. Chen, “A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation”, Applied Phys. A, Vol. 92, pp. 571, 2008.
    [45]Y. H. Lin, S. R. Jian, Y. S. Lai and P. F. Yang, “Molecular dynamics simulation of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon”, Nanoscale Res. Lett., Vol. 3, No. 2, pp. 71-75, 2008.
    [46]A. M. Minor, E. T. Lilleodden, M. Jin, E. A. Stach, D. C. Chrzan and J. W. Morris, “Room temperature dislocation plasticity in silicon”, Philosophical Magazine, Vol. 85, pp. 323-330, 2005.
    [47]Q. Li, S. M. Koo, M. D Edelstein, J. S Suehle and C. A Richter, “Silicon nanowire electromechanical switches for logic device application”, Nanotechnology, Vol. 18, pp. 315202, 2007.
    [48]X. D. Han, K. Zheng, Y. F. Zhang, X. N. Zhang, Z. Zhang and Z. L. Wang, “Low-Temperature In Situ Large-Strain Plasticity of Silicon Nanowires”, Advanced Materials, Vol. 19, pp. 2112-2118, 2007
    [49]D. C. Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London, 1997.
    [50]J. E. Jones, “The Determination of Molecular Fields I. From the Variation of the Viscosity of a Gas with Temperature”, Proc. R. Soc. London, Ser. A, Vol. 106, No. 738, pp. 441-462, 1924.
    [51]L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No. 3, pp. 687-690, 1959.
    [52]S. M. Foiles, M. I. Baskes and M. S. Daw, “Embedded-Atom Method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys”, Phys. Rev. B, Vol. 33, No. 12, pp. 7983-7991, 1986.
    [53]F. Cleri and V. Rosato, "Tight-Binding Potentials for Transition Metals and Alloys", Phys. Rev. B: Condens. Matter, Vol. 48, No. 1, pp. 22-33, 1993.
    [54]J. Tersoff, “New Empirical Model for the Structural Properties of Silicon”, Phys. Rev. Lett., Vol. 56, pp. 632-635, 1986.
    [55]J. Tersoff, “New Empirical Approach for the Structure and Energy of Covalent Systems”, Phys. Rev. B, Vol. 37, pp. 6991-7000, 1988.
    [56]J. Tersoff, “Empirical Interatomic Potential for Silicon with Improved Elastic Properties”, Phys. Rev. B, Vol. 38, pp. 9902-9905, 1988.
    [57]J. Tersoff, “Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon”, Phys. Rev. Lett., Vol. 61, pp. 2879-2882, 1988.
    [58]J. Tersoff, “Modeling solid-state chemistry: Interatomic Potentials for Multicomponent Systems”, Phys. Rev. B, Vol. 39, pp. 5566-5568, 1989.
    [59]D. Frenkel and B. Smit, “Understanding Molecular Simulation”, Academic Press, San Diego, 1996.
    [60]T. Iwaki, "Molecular Dynamic Study on Stress-Strain in Very Thin Film", JSME Int. J. Ser. A, Vol. 39, No. 3, pp. 346-353, 1988.
    [61]J. Li, K. J. V. Vliet, T. Zhu, S. Yip and S. Suresh, "Atomistic Mechanisms Governing Elastic Limit and Incipient Plasticity in Crystals", Nature, Vol. 418, No. 6895, pp. 307-310, 2002.
    [62]J. C. Jamieson, “Crystal Structures at High Pressures of Metallic Modifications of Silicon and Germanium”, Science, Vol. 139, No. 3556, pp. 762-764, 1963.
    [63]J. Z. Hu, L. D. Merkle, C. S. Menoni and I. L. Spain, “Crystal data for high-pressure phases of silicon”, Phys. Rev. B., Vol. 34, pp. 4679-4684, 1986.
    [64]J. Crain, S. J. Clark, G. J. Ackland, M. C. Payne, V. Milman, P. D. Hatton and B. J. Reid, “Theoretical study of high-density phases of covalent semiconductors. I. Ab initio treatment”, Phys. Rev. B, Vol. 49, No. 8, pp. 5329-5340, 1994.
    [65]J. Crain, G. J. Ackland, J. R. Maclean, R. O. Piltz, P. D. Hatton and G. S. Pawley, “Reversible pressure-induced structural transitions between metastable phases of silicon”, Phys. Rev. B, Vol. 50, No. 17, pp. 13043-13046, 1994.
    [66]R. O. Piltz, J. R. Maclean, S. J. Clark, G. J. Ackland, P. D. Hatton and J. Crain, “Structure and properties of silicon XII: a complex tetrahedrally bonded phase”, Phys. Rev. B, Vol. 52, No. 6, pp. 4072-4085, 1995.
    [67]B. G. Pfrommer, M. Cote, S. G. Louie and M. L. Cohen, “Ab initio study of silicon in the R8 phase”, Phys. Rev. B, Vol. 56, pp. 6662-6668, 1997.
    [68]D. Ge, V. Domnich and Y. Gogotsi, “Thermal stability of metastable silicon phases produced by nanoindentation”, J. Appl. Phys., Vol. 95, pp. 2725-2732, 2004.
    [69]F. Shimojo, I. Ebbsjo, R. K. Kalia, A. Nakano, J. P. Rino and P. Vashishta, “Molecular Dynamics Simulation of Structural Transformation in Silicon Carbide under Pressure”, Phys. Rev. Lett., Vol. 84, pp. 3338-3341, 2000.
    [70]W. C. D. Cheong and L. C. Zhang, “A Stress Criterion for the β-Sn Transformation in Silicon under Indentation and Uniaxial Compression”, Key Engng. Mater., Vol. 233, pp. 603-608, 2003.
    [71]M. A. Tschopp, D. E. Spearot and D. L. McDowell, “Atomistic simulations of homogeneous dislocation nucleation in single crystal copper”, Modelling Simul. Mater. Sci. Eng., Vol. 15, pp. 693-709, 2007.
    [72]L. Capolungo, D. E. Spearot, M. Cherkaoui, D. L. McDowell, J. Qu and K. I. Jacob, “Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation”, J. Mech. and Phys. Solids, Vol. 55, pp. 2300-2327, 2007.
    [73]M. A. Tschopp, G. J. Tucker and D. L. McDowell, “Atomistic simulations of tension-compression asymmetry in dislocation nucleation for copper grain boundaries”, Comput. Mater. Sci., Vol. 44, pp. 351-362, 2008.
    [74]M. A. Tschopp and D. L. McDowell, “Grain boundary dislocation sources in nanocrystalline copper”, Scripta Materialia, Vol. 58, pp. 299-302, 2008.
    [75]M. A. Tschopp and D. L. McDowell, “Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading”, J. Mech. and Phys. Solids, Vol. 56, pp. 1806-1830, 2008.
    [76]T. Iwaki, “Molecular Dynamics Study on Stress-Strain in Very Thin Film: Size and Location of Region for Defining Stress and Strain”, JSME International Journal Series A, Vol. 39, No. 3, pp. 346-353, 1996.
    [77]Y. C. Lin and D. J. Pen, “Atomistic behavior analysis of Cu nanowire under uniaxial tension with maximum local stress method”, Molecular Simulation, Vol. 33, pp. 12, 2007.
    [78]Y. C. Lin and D. J. Pen, “Analogous mechanical behaviors in <100> and <110> directions of Cu nanowires under tension and compression at a high strain rate”, Nanotechnology, Vol. 18, pp. 395705, 2007.
    [79]S. K. Deb, M. Wilding, M. Somayazulu and P. F. McMillan, “Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon”, Nature, Vol. 414, pp. 528-530, 2001.
    [80]K. Christmann, “Introduction to surface physical chemistry”, Springr-Verlag, New York, 1991.
    [81]R. Komanduri, N. Chandrasekaran and L. M. Raff, “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel”, International Journal of Mechanical Sciences, Vol. 43, pp. 2237-5560, 2001.
    [82]I. Zarudi, L. C. Zhang and M. V. Swain, “Behavior of monocrystalline silicon under cyclic microindentations with a spherical indenter”, Appl. Phys. Lett., Vol. 82, No. 7, pp. 1027-1029, 2003.
    [83]I. Zarudi, L. C. Zhang and M. V. Swain, “Microstructure evolution in monocrystalline silicon in cyclic microindentations”, J. Mater. Res. Vol. 18, No. 4, pp. 758-761, 2003.

    下載圖示 校內:2015-07-27公開
    校外:2015-07-27公開
    QR CODE