簡易檢索 / 詳目顯示

研究生: 黃苑華
Huang, Yuan-Hua
論文名稱: 台灣工學院學生英語字彙知識之研究
A Study of the English Vocabulary of Engineering Students in Taiwan
指導教授: 鄒文莉
Tsou, Wen-Li
學位類別: 碩士
Master
系所名稱: 文學院 - 外國語文學系
Department of Foreign Languages and Literature
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 112
中文關鍵詞: 工學院語料庫工學院常用教科書工學院專業英語學習單字表台灣工學院大學生字彙量
外文關鍵詞: Fundamental Engineering Corpus, Fundamental Engineering Wordlis, Engineering textbooks, Vocabulary Size of Taiwanese engineering majors
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究指出,工學院學生認為字彙量不足是閱讀原文教科書時最大的障礙,而原文書又是大學求學階段最主要的閱讀教材,若無法掌握書中內容,將有礙專業能力的發展。因此如何幫助學子們擴充單字量,讓他們輕鬆應付大量的原文教材,是目前許多學術英語同業努力的目標。所以本研究之研究目的有三:(一)找出工學院學生在閱讀原文書時,必須要認識的高頻率單字,並建立一份工學院原文教科書常用字彙量表;(二)瞭解工學院大一大二學生對此份字彙量表的認識程度以及(三)台灣大學生對字表中,不同單字類別字彙習得之情形。藉此我們可以知道學生目前所具備的單字量,並針對不足的部分施予必要的協助。
    本研究過程大致分為以下三個部分:(一)建立工學院原文書字彙量表;(二)根據字表編製單字測驗,實施測驗以找出大學工學院學生目前具備的字彙量;(三)比較大一和大二生在英語字彙表現上的差異。為了回應研究問題,本研究的研究方法如下:
    首先,研究者針對成功大學大一、大二工學院學生所需閱讀的專業基礎科目為研究對象,建立了一個工學院基礎課程語料庫(FEC),此語料庫共收錄了80多萬字、15,000多個字型(word types)。之前研究顯示,讀者在閱讀文章時,至少必須了解其中95%的文字,才能對該文有足夠程度的了解。以此標準(95%)為目標,鎖定前3,941個高頻率單字。我們認為這3,941個單字為工學院大一、大二生,在閱讀原文書時,必須認識的單字。這些單字被集結成一份工科原文教科書常用字彙量表(FEWL)。再來,我們根據Nation(2001)對單字的分類,將這份單字表中的單字,分成四個單字類別:(一)高頻率單字GSL、(二)學術英語用字AWL、(三)科技英語用字TECH以及(四)較低頻率單字 SUP[剩下不包含在前三類者,皆屬此類]。雖相對為較低頻率單字,但本質上SUP仍屬於工科原文教科書常用字彙。
    其次,研究者根據FEWL和單字分類成果,設計了一份單字測驗來檢視大一、大二生目前具備的字彙量以及探究單字類別(GSL、AWL、TECH和SUP)對工學院大學生字彙習得的情形。共有124位大學工學院學生參與研究(73位大一新生和51位大二生)。研究結果顯示:(一)字彙量方面,學生整體而言對於此字表的認識達到60%,尚有40%的部分是需要加強的; (二) 大二生具有的字彙量顯著多於大一新生。(三)若探討單字類別對學生單字的表現,我們發現學生對於各類單字的表現如下:80% GSL, 60% AWL, 47% SUP 以及40% TECH。顯示至少在 the AWL, the SUP 以及the TECH的部分,學生還有許多進步的空間;(四)而大一與大二生字彙量差異上,其顯著性主要在於TECH 和SUP的表現,而不是GSL和AWL。表示大二生經過一年的大學教育在專業類別的單字成長迅速,但在一般英語方面則呈現緩慢甚至停滯成長的狀態。據了解,在英語課程方面,大一階段學生主要仍是接受一般英語課程的訓練(English for General Purposes),課程利用不同主題,幫助學生增進其聽說讀寫的能力,其次,EGP課程雖然融入了部分學術英語單字(AWL by Coxhead, 2000),但學生在此類單字表現上,卻進步有限,顯示大一英語課程對於工學院學生擴展工科常用單字的教學仍有改進工空間。本研究的結果以及結論所提出的建議可作為日後英語教師以及課程設計者規劃英語課程的參考。

    A large number of engineering students at National Cheng Kung University (NCKU) complain about their lack of vocabulary when reading content area textbooks written in English. Studies have shown that the content-area textbooks are the main learning resource used by students in college. It was assumed that a lack of vocabulary may lead to an inadequate level of comprehension, which would directly influence the development of their professional knowledge. In order to help engineering students expand their vocabularies to a satisfactory level (a 95% text coverage was suggested as the minimum threshold for reading comprehension), the purpose of the study is to investigate the gaps between students’ current vocabulary level and the vocabulary level required for reading textbooks (also known as the FEWL later). The exploration of engineering students’ English vocabulary can help language teachers in designing curriculums.
    In order to answer the research questions, a fundamental engineering corpus (FEC) was compiled. It included 10 textbooks commonly used in the School of Engineering. The 3,941 highest-frequency word types in the FEC were selected. These words had up 95% text coverage of the textbooks. The 3,941 word FEWL was further divided into General Service Word List (GSL), the Academic Word List (AWL), Technical Words (TECH) and low-frequency words, which were words not included in the GSL, the AWL, or the TECH. The last category was named Supplementary (SUP) in this study because the occurrences of the words are not infrequent in engineering textbooks. The classification, afterwards, gave us a clear idea of how the FEWL was structured.
    Following the structure of the FEWL, we designed a yes-no vocabulary test to explore first-year and second-year students’ vocabularies as they related to the FEWL. Participants included 124 Engineering undergraduate students (73 freshmen and 51 sophomores). The exploration focused not only on the size of their vocabularies, but also on their percentage performance in each category of vocabulary. The results of the study revealed that (1) overall students recognized 60% of the words in the FEWL, leaving 40% unknown; (2) there were significant differences in the sizes of freshmen and sophomores’ vocabularies; (3) in terms of word categories, the participants were able to recognize 80% of the GSL, 60% of the AWL, 47% of the SUP and 40% of the TECH, on average, and (4) the main difference between first-year and second-year students was their knowledge of subject-related vocabularies (the SUP and the TECH), rather on that of non-subject-related vocabularies (the AWL and the GSL). This may imply that wide-focus general English courses have limited effect on helping engineering majors expand their understanding of the required vocabulary in reading content-area textbooks. Based on the findings, some implications for future English curriculum designs are presented at the end of the study.

    Table of Content Acknowledgements i Chinese Abstract iii English Abstract v Table of Content vii Table of Figures and Tables xii Chapter 1 Introduction 1 1.1. Introduction 1 1.1.1. Vocabulary Requirement 2 1.1.2. Students’ Vocabulary Knowledge 4 1.1.2.1. The Quantity of Students’ Vocabulary Knowledge 4 1.1.2.2. The Quality of Vocabulary Knowledge 5 1.2. The purpose of the study 7 1.3. Research Questions 8 1.4. The Contribution of the Study 8 1.5. Important Terminology 8 1.6. Organization of this Thesis 9 Chapter 2 Literature Review 11 2.1. Vocabulary Requirements for Reading a Text 11 2.2. Discussions about various Engineering Wordlists 14 2.2.1. BEL by Ward (2009) 14 2.2.2. EWL by Ward (1999) and SEEC by Mudraya (2004, 2006) 15 2.3. Arguments about Word Family and Word Lemma 19 2.3.1. Definitions of Four Kinds of Word Counting Units 19 2.3.2. Arguments against Word Families 20 2.3.3. Arguments against Word Lemma 22 2.4. Characteristics of the Four Categories of Vocabulary 23 2.4.1. General Service Words (GSL) 24 2.4.2. Academic Wordlist (AWL) 24 2.4.3. Technical words 25 2.4.4. Low-frequency words 26 2.5. EFL Students’ Vocabulary Knowledge 27 2.5.1. EFL Students’ Knowledge of a Specialized Wordlist 27 2.5.2. Effects of the Four Word Categories on Vocabulary Learning 28 Chapter 3 Methodology 31 3.1. Participants 31 3.2. Corpus Design 33 3.2.1. Textbook Selection Criteria 33 3.2.2. Corpus Compiling Procedures 35 3.3. Procedures of Vocabulary Classifications 37 3.3.1. Defining technical words 37 3.3.2. Steps employed to sort out technical words 38 3.3.2.1. Phase 1: Technical Word Classification 38 3.3.2.2. Phase 2: Technical Word Confirmation 42 3.3.3. Classification of the GSL, AWL, and SUP 43 3.4. Test Instrument 45 3.4.1. Yes/No Vocabulary Test 45 3.4.2. Real Words and Pseudo-Words 47 3.4.2.1. Sampling of the Read Words 47 3.4.2.2. Invention of Pseudo-Words 49 3.5. Test Administration 50 3.6. Data Analysis Framework 51 3.6.1. Item response 51 3.6.2. Scoring Method for the Yes-No Vocabulary Test 52 3.6.3. The Performance on the Four Categories of Vocabulary 54 3.6.4. Reliability of the Yes-No Vocabulary Tests 55 3.6.5. Analysis of the Raw Data 55 Chapter 4 Results 56 4.1. Results 56 4.1.1. How many words are required in order to reach an adequate level of reading comprehension? 56 4.1.2. How is the FEWL composed in terms of the four categories of vocabulary? 57 4.1.3. How many words in the FEWL do the participants know? 58 4.1.4. Is there any difference between freshmen and sophomore students in terms of their knowledge of FEWL vocabulary? 58 4.1.5. How does their knowledge of FEWL vocabulary differ with respect to the four word categories? 59 4.2. A brief summary of the findings from the results 61 Chapter 5 Discussion 62 5.1. Vocabulary Requirement 62 5.1.1. FEWL of the 3,941 Word Types 62 5.1.2. Structure of the FEWL 63 5.2. Students’ Vocabulary Knowledge 65 5.2.1. Students’ Vocabulary Size of the FEWL 65 5.2.2. Students’ Vocabulary Performances on Four Word Categories 66 5.2.3. The Effect of the Courses Offered at the First Year of College 67 5.2.3.1. Effect of the Specialized Courses on the Development of Subject-related Vocabulary 68 5.2.3.2. Effect of the EGP on the Development of Non-subject-related Vocabulary 69 Chapter 6 Conclusion 73 6.1. Summary 73 6.2. Pedagogical Implication 75 6.3 Limitations and Recommendations for Further Studies 78 References 81 Appendix A: Engineering Textbooks in the Fundamental Engineering Corpus 85 Appendix B: Fundamental Engineering Wordlist 86 Appendix C: The Yes/no Vocabulary Test (Version 1) 106 Appendix D: The Yes/no Vocabulary Test (Version 2) 110

    Barrow, J., Nakanishi, Y. & Ishino, H. (1999). Assessing Japanese college students' vocabulary knowledge with a self-checking familiarity survey. System, 27, 223-247.
    Beeckmans, R., Eyckmans, J., Janssens, V., Dufranne, M. & Van de Velde, H. (2001). Examining the yes-no vocabulary test: some methodological issues in theory and practice. Language Testing, 18, 235-274.
    Biber, D. (1993). Representativeness in Corpus Design. Literary and Linguistic Computing 8(4), 243-257.
    Chujo, K. (2004). Measuring Vocabulary Levels of English Textbooks and Tests Using a BNC Lemmatised High Frequency Word List. Language and Computers, 19, 231-249.
    Chung, T. M. & Nation, P. (2003). Technical Vocabulary in Specialized Texts. Reading in a Foreign Language, 15(2). Retrieved from http://nflrc.hawaii.edu/rfl/October2003/chung/chung.html
    Coxhead, A. (2000). A New Academic Word Listt. TESOL Quarterly, 34(2), 213-238.
    Coxhead, A. (2002). The Academic Word List: A Corpus-based Word List for Academic Purposes. Language and Computers, 73-89.
    Coxhead, A. & Hirsh, D. (2007). A pilot science-specific wordlist. Revue Francaise de Linguistique Appliquee, 12(2), 65-78.
    Coxhead, A. & Nation, P. (2001). The specialized vocabulary of English for academic
    purposes. In J. Flowerdew & M. Peacock (Eds.), Research perspectives on English for
    academic purposes (pp. 252-267). Cambridge: Cambridge University Press.
    Goulden, R., Nation, P. & Read, J. (1990). How Large Can a Receptive Vocabulary Be? Applied Linguistics, 11(4), 341-363.
    Hirsh, D. & Nation, P. (1992). What Vocabulary Size is Needed to Read Unsimplified Texts for Pleasure? Reading in a Foreign Language, 8(2), 689-696.
    Hou, Y-C. (2008). Reputation Ranking of Engineering and Management Department in Taiwan Unviersities: Perspectives from Peers and Users. Journal of Education Research(168), 75-93.
    Hu, M. & Nation, P. (2000). Unknown vocabulary density and reading comprehension. Reading in a Foreign Language, 13, 403-430.
    Huibregtse, I., Admiraal, W. & Meara, P. (2002). Scores on a yes-no vocabulary test: correction for guessing and response style. Language Testing, 19(3), 227-245.
    Hwang, K. & Nation, P. (1995). Where Would General Service Vocabulary Stop and Special Purposes Vocabulary Begin? System, 23(1), 35-41.
    Hyland, K. & Tse, P. (2007). Is There an Academic Vocabulary. TESOL Quarterly, 41(2), 235-253.
    Jackson, L., Meyer, W. & Parkinson, J. (2006). A study of the writing tasks and reading assigned to undergraduate science students at a South African University. English for Specific Purposes, 25, 260-281.
    Kuo, C-H. (1987). Need Analysis of Undergraduates, Graduates Technicians of Science and Engineering. The Proceeding of the Fourth Conference on English Teaching and Learning in the Republic of China (ROC-TEFL), 263-273.
    Krippendorff, K. (1980). Content Analysis: An Introduction to its Methodology. London, Sage.
    Laufer, B. (1989). What percentage of text-lexis is essential for comprehension? In C.
    Lauren & M. Nordman (Eds.), Special Language: From humans thinking to thinking
    machines (pp. 316-323). Clevedon: Multilingual Matters.
    Meara, P. (1990). Some notes on the Eurocentres vocabulary tests. AFinLA Yearbook
    1990,48, 103-113.
    Meara, P. (1992). Network structures and vocabulary acquisition in a foreign language. In
    P. Arnaud & H. Bejoint (Eds.), Vocabulary and applied linguistics. London: Macmillan.
    Mochida, A. & Harrington, M. (2006). The Yes/No test as a measure of receptive vocabulary knowledge. Language Testing, 23(1), 73-98.
    Mudraya, O. (2004). The Student Engineering Corpus: Analysing word frequency. Paper presented at the Proceedings of the corpus linguistics 2003 conference, UCREL, Lancaster University.
    Mudraya, O. (2006). Engineering English: A lexical frequency instructional model. English for Specific Purposes, 25, 235-256.
    Nagy, W. E., Herman, P. A. & Anderson, R. C. (1985). Learning words from context. Reading Research Quarterly, 20(2), 233-253.
    Nation, I. S. P. (1990). Teaching and Learning Vocabulary. Massachusettes: Newberry House.
    Nation, I. S. P. (2001). Learning vocabulary in another language. Cambridge: Cambridge University Press.
    Nation, I. S. P. (2006). How Large a Vocabulary is Needed For Reading and Listening? The Canadian Modern Language Review/La Revue canadienne des langues vivantes, 63(1), 59-82.
    NCKU Annual Report. (2008) NCKU Annual Report. Tainan: National Cheng-Kung
    University
    Nurweni, A. & Read, J. (1999). The English Vocabulary Knowledge of Indonesian University Students. English for Specific Purposes, 18(2), 161-175.
    Parkinson, J. & Adendorff, R. (2004). The use of popular science articles in teaching scientific literacy. English for Specific Purposes, 23, 379-396.
    Parkinson, J., Jackson, L., Padayachee, V. & Kirkwood, T. (2007). A scaffolded reading and writing course for foundation level science students. English for Specific Purposes, 26(4), 443-461.
    Rizzo, C. R. (2010). Getting on with Corpus Compilation: From Theory to Practice. ESP World Issue, 9(1), 1-23.
    Schmitt, N. & Zimmerman, C. B. (2002). Derivative Word Forms: What Do Learners Know? TESOL Quarterly, 36(2), 145-171
    Sim, J. & Wright, C. C. (2005). The kappa statistic in reliability studies: use interpretation, and sample size requirements. Physical Therapy, 85, 257-268.
    Tzeng, Y. (2009, April 17, 2009). Active and Practical Research at National Cheng Kung University. Research Express, 8.
    Vidal, K. (2003). Academic Listening: A source of vocabulary acquisition. Applied Linguistics, 24(1), 56-89.
    Wang, J., Liang, S-L. & Ge, G-C. (2008). Establishment of a Medical Academic Word List. English for Specific Purposes, 27, 442-458.
    Ward, J. (1999). How large a Vocabulary do EAP Engineering Students need? Reading in a Foreign Language, 12(2), 309-323.
    Ward, J. (2001). EST: evading scientific text. English for Specific Purposes, 20(2), 141-152.
    Ward, J. (2009a). A basic engineering English word list for less proficient foundation engineering undergraduates. English for Specific Purposes, 28, 170-182.
    Ward, J. (2009b). EAP reading and lexis for Thai engineering undergraduates Journal of English for Academic Purposes, 8, 294-301.
    Ward, J. & Chuenjundaeng, J. (2009). Suffix knowledge: Acquisition and applications. System, 37(3), 461-469.
    West, M. (1953). A general service list of English words. London: Longman, Green & Co.
    Ye, C-X. (2002). Research Method of Education. Taipei: Psychology.
    Zheng, H-X. (2002). The Generation of A Reference Wordlist for Taiwanese High School

    無法下載圖示 校內:2016-02-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE